题目简介
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
输出: true
示例 2:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
输出: false
思路
题目要的是高效查找算法,而且这个二维数组是有序的,很容易想到的二分查找
但问题来了,二分查找只是对一维数组,那么二维数组呢?
其实只要找到 二维数组和一维数组的对应关系 即可
一维数组怎么和二维数组对应呢?
假设已知一维数组的下表为 mid
, 那么M ×N二维数组的坐标为 [mid / n][mid % n]
这样就找到对应关系了,代码直接按照二分查找的改下就OK
通过代码
class Solution {
public:
bool searchMatrix(vector<vector<int>>& array, int target) {
if (array.size() <= 0) return false;
int n = array[0].size();
int h = array.size();
int len = n * h;
int l = 0, r = len - 1, mid, midValue, ret = -1;
// 防止整形溢出
while (l <= r) {
mid = l + (r - l) / 2;
midValue = array[mid / h][mid % n];
// cout << midValue << endl;
if (midValue > target) {
r = mid - 1;
} else if (midValue < target){
l = mid + 1;
} else {
ret = mid;
break;
}
}
return ret != -1;
}
};