文章目录 K近邻法3.1K近邻简介3.2K近邻算法3.3K近邻误差率3.4K近邻三要素模型:距离度量:K-值选择分类决策规则 3.5kd树3.6kd树的构造算法3.7搜索kd树搜索kd树例子: K近邻法 3.1K近邻简介 3.2K近邻算法 3.3K近邻误差率 3.4K近邻三要素 模型: 距离度量: 不同距离度量的选择,可以导致最近邻点也不同 K-值选择 分类决策规则 3.5kd树 3.6kd树的构造算法 排序:2,4,5,7,8,9,选择7划分区域 选择:2 4 5 | 8 9,再次划分区域 唯一 3.7搜索kd树 搜索kd树例子: 1.按照(7,2),(5,4),(4,7)找到“当前最近点” 2.回溯发现兄弟结点(2,3)有更近的距离,更新“当前最近点” 3.顺利回溯至根结点