第三章:K近邻法

本文介绍了K近邻(KNN)算法的基本原理,包括KNN的简介、误差率、距离度量对结果的影响以及K值的选择。同时,详细阐述了kd树的构造过程和搜索策略,举例说明了如何在kd树中进行高效查找最近邻点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K近邻法

3.1K近邻简介

image-20230113143217924

3.2K近邻算法

image-20230113144513266

3.3K近邻误差率

image-20230113145416961image-20230113145431666image-20230113150410766image-20230113150807151

3.4K近邻三要素
模型:

image-20230113155133638

距离度量:

image-20230113155249297image-20230113155713784

不同距离度量的选择,可以导致最近邻点也不同

K-值选择

image-20230113160624682

分类决策规则

image-20230113170117178

image-20230113170239845

3.5kd树

image-20230113170856018

3.6kd树的构造算法

image-20230113171946931

image-20230113195317468

  1. 排序:2,4,5,7,8,9,选择7划分区域

    image-20230113200246636

  2. 选择:2 4 5 | 8 9,再次划分区域

    image-20230113200552670

  3. 唯一

image-20230113200609008

image-20230113200623580

3.7搜索kd树

image-20230113210259768

搜索kd树例子:

image-20230114135523640

1.按照(7,2),(5,4),(4,7)找到“当前最近点”

image-20230114135500779

2.回溯发现兄弟结点(2,3)有更近的距离,更新“当前最近点”

image-20230114140338577

3.顺利回溯至根结点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值