
tensorflow使用
Ai君臣
通俗说技术AI,一针见血。AI改变世界!立志做一款让人偷懒依赖的个人定制的管家。可信可赖可知心。有志之士互勉!wx公号一休哥
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
tensorflow pb格式模型预测规范写法。不然耗时多,或者内存溢出
背景:加载pb格式模型文件并预测解决方法:要声明新的图和session并复用,# 加载 self.graph = tf.Graph() # 为每个类(实例)单独创建一个graphwith self.graph.as_default(): output_graph_def = tf.GraphDef() pb_path = wenlp_configs["sentence_matcher"]["pb_model_path"] with open(pb_path, .原创 2020-09-18 17:55:21 · 717 阅读 · 0 评论 -
张量,节点,命名理解
张量,节点,命名理解在定义静态图的时候,a = tf.constant([1.0,2.0],name='x')b = tf.constant([1.0,2.0],name='y')c = tf.add(a,b,name='nmsl')print(c)<tensor>:nmsl:0,shape,dtype)可以看出,c是一个tensor类型,所以tensor其实代表一个数据流,说白了就是一个节点输出,其中每个tensor的名字为对应节点的名字加:0,0代表该节点的第一个原创 2020-09-02 10:12:31 · 288 阅读 · 0 评论 -
一个进程跑多个深度学习tensorflow 和keras混合模型,多实例。
一、背景: 我们建立了10个CNN模型,然后我们又写了一个预测类Predict,这个类会从已经保存好的模型restore恢复相应的图结构以及模型参数。然后我们会创建10个Predict的对象Instance,每个Instance负责一个模型的预测。 再者,我们有个NLP服务,比如要加keras训练的句子分类,还有深度相似度模型。那么有两个模型同时在该进程里。这样会出错。类似于出现ValueError: Tensor Tensor("Pooler-Dense", shape=(...原创 2020-07-01 20:02:45 · 949 阅读 · 0 评论 -
几个例子后,就可以和tensorflow 愉快的玩耍
一、背景Keras的易用,pytorch的直观,但是总避不开tensorflow毕竟谷狗大佬的,范围很广,从阿尔法狗由谷狗带火,AI热起来,但是tensorflow大部分人还是有点抗拒的,分析原因1.不符合程序员直觉(程序员的直觉是代码可以一行行的运行,每一行就会有结果)2.tensorflow借款众多,写个矩阵乘tf.multiply tf.matmul等等要区分二、解决方法1.理解tensorflow的思路俗话说,不能避开就接受它,那么就理解tensorflow的思路,就是.原创 2020-06-30 08:26:48 · 280 阅读 · 0 评论 -
tensorflow保存文件格式总结
一、背景tensorflow还是非常灵活的,但是有门槛的,门槛有两点api比较多,理解tensorflow的思维(先建立图,然后建立session,然后运算,pytorch是不用这样),这篇文章说说保存tensorflow保存的模型Tensorflow的保存分为四种:1. checkpoint模式; 2. saved_model模式(包含pb文件和variables); 3. 纯pb模式;(只有一个pb文件) 4.keras的 h5 模式1. checkpoint模式# 一个原创 2020-06-28 17:43:33 · 742 阅读 · 0 评论 -
tensoflow 使用CPU和GPU的准确代码,重点准确!
tensorflow 使用CPU和GPU,某度,某google一搜一大堆,排名靠前的都不一定对。如果你搜到我这篇,那么你肯定准确了。前提:你安装了cuda等GPU环境没有问题1 、使用CPU很多人会说,cpu啥都不用配置,直接用就是cpu,那是因为你没安装好GPU的cuda驱动,如果安装好了,默认tensorflow是使用CPU的而且,乱占用。import osos.environ["CUDA_VISIBLE_DEVICES"] = "" #这句关键import timeimpo原创 2020-06-24 17:28:39 · 1117 阅读 · 0 评论