
系统层--联邦学习
联邦学习技术及数据隐私保护大会上明确提出了“联邦机器学习”这个概念。 [2] 数据是机器学习的基础 。而在大多数行业中,由于行业竞争、隐私安全、行政手续复杂等问题,数据常常是以孤岛的形式存在的。
路途…
Reading is a long investment.During this process, find the entertainment and enjoy life while treasure the present to compound interest.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Federated Learning】KubeFATE 搭建使用
由于KubeFATE使用了容器技术对FATE进行了封装,因此相对于传统的安装部署,使用KubeFATE有以下优点:使用简单,免除缺失依赖软件包的烦恼。配置方便,一个配置文件就能部署多套集群。 目前KubeFATE支持使用Docker-Compose和Kubernetes两种方式来部署和管理FATE集群,分别面向了测试开发和生产这两种使用场景。适用于云环境。管理灵活,可按需增减集群规模. ...原创 2020-05-16 09:16:17 · 3469 阅读 · 4 评论 -
【联邦学习基础】同态加密技术
【同态加密】 同态是从一个代数结构(如:群、环或者向量空间)到同类代数结构的映射,它保持所有相关的结构不变。从数学的角度上讲,同态就是“保运算”。举一个简单的例子: 考虑带加法运算的整数。保持加法不变的函数有如下性质: f(a+b)=f(a)+f(b) 例如f(x)=3x就是这样的一个同态。因为f(a...转载 2020-04-10 09:11:06 · 8124 阅读 · 2 评论 -
【联邦学习】概要
转载:https://zhuanlan.zhihu.com/p/81827262联邦学习背景介绍1.AI落地的理想与现实AI 落地的时候,其实并不容易,会遇到很多现实的问题,比如:现实中,我们的数据质量是非常差的,例如聊天数据中有很多噪音; 数据标签,收集是比较困难的,很多场景中的数据是没有标签的; 数据是分散的,(这也是最重要的一点)每家应用的数据不一样,比如腾讯用的是社...转载 2020-04-10 09:10:19 · 2894 阅读 · 0 评论