conda tricks

修改默认镜像为清华的镜像:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
清华大学开源软件镜像站

创建虚拟环境

如果Anaconda支持高于python3.6的版本,则可创建低于python3.6的虚拟环境,
例如,Anaconda3-2020.07-Linux-x86_64.sh支持最高python版本为3.8,则可创建名为tensorflow的python3.6的虚拟环境:conda create -n tensorflow python=3.6

删除虚拟环境

conda remove -n tensorflow --all

列举出所有环境:

conda info -e

安装tensorflow

查看tensorflow-gpu有哪些版本:conda search tensorflow-gpu
查看tensorflow有哪些版本:conda search tensorflow
conda create -n tensorflow2.1.0 python=3.7
GPU版本 pip3 install tensorflow_gpu==2.1.0
CPU版本 pip install tensorflow==1.4.0
手动指定源:
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow_gpu==2.1.0

查看tensorflow_gpu是否启用了GPU:

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

输出如下信息,则说明启用了GPU:

[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 12314334038188697173
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 10304169984
locality {
  bus_id: 1
  links {
  }
}
incarnation: 13833105769355917182
physical_device_desc: "device: 0, name: NVIDIA GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1"
]

CUDA版本

linux
nvcc --versionnvcc -V
cat /usr/local/cuda/version.txt
windows
nvcc --version

CUDNN版本

linux
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
windows
进入 CUDA 的安装目录查看文件 cudnn.h
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\include\cudnn.h

CUDA库找不到

虽然安装了CUDA但是运行时发现找不到类似如下库,原因可能是:

ellipse
图1 找不到cuda相关库
  1. 版本不对,例如使用GPU的TensorFlow不同版本对CUDA和cuDNN的版本要求不一样。具体可查看:https://tensorflow.google.cn/install/source
  2. 安装了CUDA版本也对,但是路径没加
    vi ~/.bash_profile,然后将cuda安装路径写进去(参考Linux常见问题及解决方案),然后再执行source ~/.bash_profile即可:
ellipse
图2 vi ~/.bash_profile添加环境变量
还有人用tensorflow0.8吗,请告诉我为什么

conda create -n tensorflow0.8 python=3.5
下载 https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0-cp34-cp34m-linux_x86_64.whl,可能无法直接安装,因为创建的虚拟环境python是3.5的,安装文件是python3.4的(报错tensorflow-0.8.0-cp34-cp34m-linux_x86_64.whl is not a supported wheel on this platform.
),重命名后方可安装(参考Cannot install tensorflow on fresh ubuntu partition: tensorflow-0.8.0-cp34-cp34m-linux_x86_64.whl is not a supported wheel on this platform):

wget https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0-cp34-cp34m-linux_x86_64.whl
mv tensorflow-0.8.0-cp34-cp34m-linux_x86_64.whl tensorflow-0.8.0-cp35-cp35m-linux_x86_64.whl
pip install tensorflow-0.8.0-cp35-cp35m-linux_x86_64.whl

安装opencv

当需要使用opencv但未安装时会提示:ImportError: No module named 'cv2'
安装方法:
conda install -c https://conda.anaconda.org/menpo opencv
或:
pip install --upgrade opencv-python

virtualenv创建虚拟环境

sudo apt-get install python3-pip python3-dev python3-virtualenv

  1. 参数--system-site-packages 表示已经安装到系统Python环境中的所有第三方包会复制过来
    virtualenv --system-site-packages ~/env/tensorflow

  2. 参数--no-site-packages表示安装到系统Python环境中的所有第三方包都不会复制过来,这样就得到了一个不带任何第三方包的“干净”的Python运行环境。
    virtualenv --no-site-packages ~/env/tensorflow
    激活虚拟环境:
    source ~/env/tensorflow/bin/activate

CUDA版本不对

tensorflow训练的时候报错:failed to run cuBLAS routine cublasSgemm_v2: CUBLAS_STATUS_EXECUTION_FAILED
报错原因是tensorflow版本与CUDA版本不匹配。
参考:https://blog.csdn.net/thunder_k/article/details/90610218

ellipse
图3 CUDA版本不对

卸载anaconda

https://docs.anaconda.com/anaconda/install/uninstall/?highlight=uninstall
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值