Hugging Face 模型下载及使用
个人博客:https://liuqianglong.com
公众号:自刘地
这篇文章介绍了Hugging Face平台和它的核心产品。演示了如何在AWS EC2实例上,从Hugging Face Hub下载并运行Qwen2-0.5B-Instruct模型。最后,还展示了如何用Gradio图形化界面与Qwen LLM进行聊天对话。
一、Hugging Face 简介
Hugging Face是一家美国公司,成立于2016年,起初是为青少年开发聊天机器人应用程序。后来,Hugging Face转型为专注于机器学习的平台公司,推出了多款促进NLP(自然语言处理)技术发展的产品。主要产品有:
-
预训练模型:Hugging Face提供了一系列优秀的预训练NLP模型,如BERT、GPT、RoBERTa等,这些模型在多项任务中表现出色。 -
Transformers库:Hugging Face开发了名为 transformers
的Python库,支持PyTorch和TensorFlow等深度学习框架,提供了加载、微调和使用预训练模型的便捷工具。 -
NLP工具:他们提供了多种NLP相关工具,如文本生成、文本分类和命名实体识别,帮助开发者快速构建NLP应用。 -
Hugging Face Hub:这是一个集中式的Web平台,类似于GitHub,托管基于Git的代码仓库、模型和数据集,并支持项目讨论和拉取请求。 -
Hugging Face Spaces:Hugging Face Spaces是一个允许用户轻松部署和分享AI应用的平台。。它提供了一个易于使用的GUI,使用户能够快速创建和部署Web托管的ML应用。2021年底,Hugging Face宣布收购了Gradio。Gradio是一个开源Python包,允许用户快速为机器学习模型、API或任何Python函数构建交互式演示或Web应用程序,无需编写HTML、CSS或JavaScript代码。
二、大模型竞技场与排名
另外在Hugging Face可以查看各个大模型的排行榜,例如下面的开源大模型排行榜 [1]。

由LMSYS维护的大模型聊天竞技场,收集人类对大模型聊天回复的反馈,进行排名 [2]。

发送的问题会同时给两个模型进行回复,根据回复内容进行投票,一共4个选项,A胜、B胜、平手或者都不行。投票后会显示回复的大模型版本。

三、Hugging Face Spaces 使用
Hugging Face Spaces是一个允许用户轻松部署和分享AI应用的平台,很多大模型都会在Spaces上发布不同版本的模型,为大家提供测试。例如下面是Qwen的Spaces空间https://huggingface.co/Qwen [3]。

点击进入Qwen2-72B-Instruct Chat
,可以进行聊天测试。
