两个相离圆上各取一点P、Q,求线段PQ中点M的轨迹。

中点轨迹多种表现形式

来源:【南通】张海洋(1531861160) 9/17/2021 6:07:47 PM
两圆上两点的中点轨迹

题目:两个相离圆上各取一点P、Q,求线段PQ中点M的轨迹。

1. 构造坐标系

不妨取一个圆的圆心为原点,另一个圆的圆心为 ( a , 0 ) , (a,0), (a,0), 并设圆1的半径为 r 1 , r_1, r1, 圆2的半径为 r 2 r_2 r2
得到

圆1的方程为: x 2 + y 2 = r 1 2      ( 1 ) x^2+y^2= r_1^2\qquad\qquad\;\; (1) x2+y2=r12(1)

圆2的方程为: ( x − a ) 2 + y 2 = r 2 2 ( 2 ) (x-a)^2+y^2= r_2^2\qquad (2) (xa)2+y2=r22(2)

2. 解题过程(笛卡尔坐标系)

设圆1上任意一点 P ( x 1 , y 1 ) , P(x_1,y_1), P(x1,y1), 圆2上任意一点 Q ( x 2 , y 2 ) , P Q Q(x_2,y_2), PQ Q(x2,y2),PQ 的中点 M ( x , y ) , M(x,y), M(x,y), 则有:
{ 2 x = x 1 + x 2 ( 3 ) 2 y = y 1 + y 2 ( 4 ) x 1 2 + y 1 2 = r 1 2 ( 5 ) ( x 2 − a ) 2 + y 2 2 = r 2 2 ( 6 ) \begin{cases} 2x = x_1+x_2 &(3)\\ 2y = y_1+y_2 &(4)\\ x_1^2+y_1^2=r_1^2 &(5)\\ (x_2-a)^2+y_2^2=r_2^2 &(6)\end{cases} 2x=x1+x22y=y1+y2x12+y12=r12(x2a)2+y22=r22(3)(4)(5)(6)

消元法,先消去 x 1 , y 1 , ( 3 ) , ( 4 ) x_1,y_1, (3),(4) x1,y1,(3),(4) 代入 ( 5 ) (5) (5) 得到:
( 2 x − x 2 ) 2 + ( 2 y − y 2 ) 2 = r 1 2 (2x-x_2)^2+(2y-y_2)^2=r_1^2 (2xx2)2+(2yy2)2=r12
( x − x 2 2 ) 2 + ( y − y 2 2 ) 2 = ( r 1 2 ) 2 ( 7 ) (x-\frac{x_2}{2})^2+(y-\frac{y_2}{2})^2 = (\frac{r_1}{2})^2 \qquad (7) (x2x2)2+(y2y2)2=(2r1)2(7)

或者 消去 x 2 , y 2 , ( 3 ) , ( 4 ) x_2,y_2, (3),(4) x2,y2,(3),(4) 代入 ( 5 ) (5) (5) 得到:
( 2 x − x 1 − a ) 2 + ( 2 y − y ‘ ) 2 = r 2 2 (2x-x_1-a)^2+(2y-y_`)^2=r_2^2 (2xx1a)2+(2yy)2=r22
( x − x 1 + a 2 ) 2 + ( y − y 1 2 ) 2 = ( r 2 2 ) 2 ( 8 ) (x-\frac{x_1+a}{2})^2+(y-\frac{y_1}{2})^2 = (\frac{r_2}{2})^2 \qquad (8) (x2x1+a)2+(y2y1)2=(2r2)2(8)

显然以上 ( 6 ) , ( 7 ) (6),(7) (6),(7) 组合与 ( 5 ) , ( 8 ) (5),(8) (5),(8) 组合后,应该等价(TODO:如何验证?)。

动态演示参见Geogebra官方网站上的示例:
速度控制轨迹生成演示
速度控制轨迹生成.PNG

3. 解题过程(极坐标系)

不妨设 P ( r 1 ; v ) , Q ( a + r 2 cos ⁡ u , r 2 sin ⁡ u ) P(r_1;v), Q(a+r_2\cos u,r_2\sin u) P(r1;v),Q(a+r2cosu,r2sinu)

( 7 ) (7) (7) 式得到:
( x − a + r 2 cos ⁡ u 2 ) 2 + ( y − r 2 sin ⁡ u 2 ) 2 = ( r 1 2 ) 2 ( 7 ′ ) (x-\frac{a+r_2\cos{u}}{2})^2+(y-\frac{r_2\sin{u}}{2})^2 = (\frac{r_1}{2})^2 \qquad (7') (x2a+r2cosu)2+(y2r2sinu)2=(2r1)2(7)

− r 1 2 4 + ( − r 2 sin ⁡ ( u ) 2 + y ) 2 + ( − a 2 − r 2 cos ⁡ ( u ) 2 + x ) 2 = 0 - \frac{r_{1}^{2}}{4} + \left(- \frac{r_{2} \sin{\left(u \right)}}{2} + y\right)^{2} + \left(- \frac{a}{2} - \frac{r_{2} \cos{\left(u \right)}}{2} + x\right)^{2}=0 4r12+(2r2sin(u)+y)2+(2a2r2cos(u)+x)2=0

( 8 ) (8) (8) 式得到:
( x − a + r 1 cos ⁡ v 2 ) 2 + ( y − r 1 sin ⁡ v 2 ) 2 = ( r 2 2 ) 2 ( 8 ′ ) (x-\frac{a+r_1\cos{v}}{2})^2+(y-\frac{r_1\sin{v}}{2})^2 = (\frac{r_2}{2})^2 \qquad (8') (x2a+r1cosv)2+(y2r1sinv)2=(2r2)2(8)

− r 2 2 4 + ( − r 1 sin ⁡ ( v ) 2 + y ) 2 + ( − a 2 − r 1 cos ⁡ ( v ) 2 + x ) 2 = 0 - \frac{r_{2}^{2}}{4} + \left(- \frac{r_{1} \sin{\left(v \right)}}{2} + y\right)^{2} + \left(- \frac{a}{2} - \frac{r_{1} \cos{\left(v \right)}}{2} + x\right)^{2}=0 4r22+(2r1sin(v)+y)2+(2a2r1cos(v)+x)2=0

图形演示参见GeoGebra上的案例:
角度为参数的中点轨迹方程
角度参数中点轨迹方程.PNG

4. Python 源码表示

>>> from sympy import *
>>> r_1,r_2,a = symbols("r_1 r_2 a",real=true,positive=true)
>>> a.is_real and a.is_positive
True
>>> u,v = symbols('u v', real = true)
>>> x,y = symbols('x y')

>>> f1=(x-(a+r_2*cos(u))/2)**2+(y-r_2*sin(u)/2)**2-(r_1/2)**2
>>> f2=(x-(a+r_1*cos(v))/2)**2+(y-r_1*sin(v)/2)**2-(r_2/2)**2

>>> print(latex(f1))
- \frac{r_{1}^{2}}{4} + \left(- \frac{r_{2} \sin{\left(u \right)}}{2} + y\right)^{2} + \left(- \frac{a}{2} - \frac{r_{2} \cos{\left(u \right)}}{2} + x\right)^{2}
>>> print(latex(f2))
- \frac{r_{2}^{2}}{4} + \left(- \frac{r_{1} \sin{\left(v \right)}}{2} + y\right)^{2} + \left(- \frac{a}{2} - \frac{r_{1} \cos{\left(v \right)}}{2} + x\right)^{2}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值