中点轨迹多种表现形式
来源:【南通】张海洋(1531861160) 9/17/2021 6:07:47 PM
题目:两个相离圆上各取一点P、Q,求线段PQ中点M的轨迹。
1. 构造坐标系
不妨取一个圆的圆心为原点,另一个圆的圆心为
(
a
,
0
)
,
(a,0),
(a,0), 并设圆1的半径为
r
1
,
r_1,
r1, 圆2的半径为
r
2
r_2
r2。
得到
圆1的方程为: x 2 + y 2 = r 1 2 ( 1 ) x^2+y^2= r_1^2\qquad\qquad\;\; (1) x2+y2=r12(1)
圆2的方程为: ( x − a ) 2 + y 2 = r 2 2 ( 2 ) (x-a)^2+y^2= r_2^2\qquad (2) (x−a)2+y2=r22(2)
2. 解题过程(笛卡尔坐标系)
设圆1上任意一点
P
(
x
1
,
y
1
)
,
P(x_1,y_1),
P(x1,y1), 圆2上任意一点
Q
(
x
2
,
y
2
)
,
P
Q
Q(x_2,y_2), PQ
Q(x2,y2),PQ 的中点
M
(
x
,
y
)
,
M(x,y),
M(x,y), 则有:
{
2
x
=
x
1
+
x
2
(
3
)
2
y
=
y
1
+
y
2
(
4
)
x
1
2
+
y
1
2
=
r
1
2
(
5
)
(
x
2
−
a
)
2
+
y
2
2
=
r
2
2
(
6
)
\begin{cases} 2x = x_1+x_2 &(3)\\ 2y = y_1+y_2 &(4)\\ x_1^2+y_1^2=r_1^2 &(5)\\ (x_2-a)^2+y_2^2=r_2^2 &(6)\end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧2x=x1+x22y=y1+y2x12+y12=r12(x2−a)2+y22=r22(3)(4)(5)(6)
消元法,先消去
x
1
,
y
1
,
(
3
)
,
(
4
)
x_1,y_1, (3),(4)
x1,y1,(3),(4) 代入
(
5
)
(5)
(5) 得到:
(
2
x
−
x
2
)
2
+
(
2
y
−
y
2
)
2
=
r
1
2
(2x-x_2)^2+(2y-y_2)^2=r_1^2
(2x−x2)2+(2y−y2)2=r12
(
x
−
x
2
2
)
2
+
(
y
−
y
2
2
)
2
=
(
r
1
2
)
2
(
7
)
(x-\frac{x_2}{2})^2+(y-\frac{y_2}{2})^2 = (\frac{r_1}{2})^2 \qquad (7)
(x−2x2)2+(y−2y2)2=(2r1)2(7)
或者 消去
x
2
,
y
2
,
(
3
)
,
(
4
)
x_2,y_2, (3),(4)
x2,y2,(3),(4) 代入
(
5
)
(5)
(5) 得到:
(
2
x
−
x
1
−
a
)
2
+
(
2
y
−
y
‘
)
2
=
r
2
2
(2x-x_1-a)^2+(2y-y_`)^2=r_2^2
(2x−x1−a)2+(2y−y‘)2=r22
(
x
−
x
1
+
a
2
)
2
+
(
y
−
y
1
2
)
2
=
(
r
2
2
)
2
(
8
)
(x-\frac{x_1+a}{2})^2+(y-\frac{y_1}{2})^2 = (\frac{r_2}{2})^2 \qquad (8)
(x−2x1+a)2+(y−2y1)2=(2r2)2(8)
显然以上 ( 6 ) , ( 7 ) (6),(7) (6),(7) 组合与 ( 5 ) , ( 8 ) (5),(8) (5),(8) 组合后,应该等价(TODO:如何验证?)。
动态演示参见Geogebra官方网站上的示例:
速度控制轨迹生成演示
3. 解题过程(极坐标系)
不妨设 P ( r 1 ; v ) , Q ( a + r 2 cos u , r 2 sin u ) P(r_1;v), Q(a+r_2\cos u,r_2\sin u) P(r1;v),Q(a+r2cosu,r2sinu)
由
(
7
)
(7)
(7) 式得到:
(
x
−
a
+
r
2
cos
u
2
)
2
+
(
y
−
r
2
sin
u
2
)
2
=
(
r
1
2
)
2
(
7
′
)
(x-\frac{a+r_2\cos{u}}{2})^2+(y-\frac{r_2\sin{u}}{2})^2 = (\frac{r_1}{2})^2 \qquad (7')
(x−2a+r2cosu)2+(y−2r2sinu)2=(2r1)2(7′)
− r 1 2 4 + ( − r 2 sin ( u ) 2 + y ) 2 + ( − a 2 − r 2 cos ( u ) 2 + x ) 2 = 0 - \frac{r_{1}^{2}}{4} + \left(- \frac{r_{2} \sin{\left(u \right)}}{2} + y\right)^{2} + \left(- \frac{a}{2} - \frac{r_{2} \cos{\left(u \right)}}{2} + x\right)^{2}=0 −4r12+(−2r2sin(u)+y)2+(−2a−2r2cos(u)+x)2=0
由
(
8
)
(8)
(8) 式得到:
(
x
−
a
+
r
1
cos
v
2
)
2
+
(
y
−
r
1
sin
v
2
)
2
=
(
r
2
2
)
2
(
8
′
)
(x-\frac{a+r_1\cos{v}}{2})^2+(y-\frac{r_1\sin{v}}{2})^2 = (\frac{r_2}{2})^2 \qquad (8')
(x−2a+r1cosv)2+(y−2r1sinv)2=(2r2)2(8′)
− r 2 2 4 + ( − r 1 sin ( v ) 2 + y ) 2 + ( − a 2 − r 1 cos ( v ) 2 + x ) 2 = 0 - \frac{r_{2}^{2}}{4} + \left(- \frac{r_{1} \sin{\left(v \right)}}{2} + y\right)^{2} + \left(- \frac{a}{2} - \frac{r_{1} \cos{\left(v \right)}}{2} + x\right)^{2}=0 −4r22+(−2r1sin(v)+y)2+(−2a−2r1cos(v)+x)2=0
图形演示参见GeoGebra上的案例:
角度为参数的中点轨迹方程
4. Python 源码表示
>>> from sympy import *
>>> r_1,r_2,a = symbols("r_1 r_2 a",real=true,positive=true)
>>> a.is_real and a.is_positive
True
>>> u,v = symbols('u v', real = true)
>>> x,y = symbols('x y')
>>> f1=(x-(a+r_2*cos(u))/2)**2+(y-r_2*sin(u)/2)**2-(r_1/2)**2
>>> f2=(x-(a+r_1*cos(v))/2)**2+(y-r_1*sin(v)/2)**2-(r_2/2)**2
>>> print(latex(f1))
- \frac{r_{1}^{2}}{4} + \left(- \frac{r_{2} \sin{\left(u \right)}}{2} + y\right)^{2} + \left(- \frac{a}{2} - \frac{r_{2} \cos{\left(u \right)}}{2} + x\right)^{2}
>>> print(latex(f2))
- \frac{r_{2}^{2}}{4} + \left(- \frac{r_{1} \sin{\left(v \right)}}{2} + y\right)^{2} + \left(- \frac{a}{2} - \frac{r_{1} \cos{\left(v \right)}}{2} + x\right)^{2}