(Dual learning)对偶学习——视频笔记

DualLearning是一种机器学习方法,旨在解决标记数据稀缺且成本高昂的问题。它通过利用未标记数据来增强模型性能,并能应用于多种场景,如神经机器翻译(NMT)、自编码器和生成对抗网络(GAN)等。本文探讨了DualLearning的基本思想、实现方式及其在不同领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dual Learning解决的问题: 带标签的训练数据少且高昂的成本,尽可能的利用无标签数据

Dual Learning 思想
这里写图片描述

Dual Learning在NMT中的应用
1.算法思想
这里写图片描述
2.负例
这里写图片描述
3.正例
这里写图片描述
4.实验设置(需要先预训练)
这里写图片描述

Dual Learning的扩展(可以扩展到多个有联系的模型)
这里写图片描述

自编码中Dual Learning的思想
这里写图片描述

GAN中Dual Learning的思想:
这里写图片描述
有标签的数据训练运用Dual Learning的两种运用方法:
(1)两个model同时做训练
这里写图片描述
(2)通过bayes公式转化
这里写图片描述

Dual Learning的提高原因(可大致将其作为一种loss的正则,使模型更加一般化)
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值