【剑指offer】树的子结构

该博客主要讨论如何判断一棵二叉树B是否是另一棵二叉树A的子结构。通过递归方式实现,当节点值相同时,若当前节点是B的根节点,则需要其左右子树分别与A的对应子树匹配;若不是B的根节点,只需左右子树之一匹配即可。递归函数的关键在于处理边界条件,如B为空或A为空的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

树的子结构

输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)

代码

递归

  • 如果结点值相同:

    1. 如果这是B的根节点,递归检查r1,r2左孩子以及r1,r2右孩子,而且这两边递归都要相同才能说明B是A的子结构;
    2. 如果这不是B的根节点,递归检查r1左孩子和r2,以及递归检查r1右孩子和r2,两边任意一边相同都可以说明B是A的子结构;
    • 那么fun(r1,r2)=(fun(r1->left,r2->left) && fun(r1->right,r2->right) ) || fun(r1->left,r2) || fun(r1->right,r2)
  • r2==NULL时,那么说明B的某个分支匹配正确,返回true

  • 如果r1==NULL并且r2!=NULL,那么说明匹配失败,返回false

class Solution {
public:
    bool HasSubtree(TreeNode* pRoot1, TreeNode* pRoot2)
    {
        if(pRoot1==NULL)
            return false;
        if(pRoot2==NULL)
            return false;
        return HS(pRoot1,pRoot2);
    }
    bool HS(TreeNode* pRoot1, TreeNode* pRoot2){
        if(pRoot2==NULL)
            return true;
        if(pRoot1==NULL)
            return false;
        if(pRoot1->val==pRoot2->val)
            return (HS(pRoot1->left,pRoot2->left) && HS(pRoot1->right,pRoot2->right))||HS(pRoot1->left,pRoot2) || HS(pRoot1->right,pRoot2);
        else
            return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值