P3372 模板 【线段树】1

这篇博客介绍了一道编程题目,涉及对数列进行两种操作:更新和查询。文章提到了输入输出格式,并给出了样例。博主在解决这个问题时使用了线段树的数据结构,虽然很久没有接触,但仍然成功实现。在实现过程中遇到了一些bug,但最终完成了代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

如题,已知一个数列,你需要进行下面两种操作:

将某区间每一个数加上 kkk。
求出某区间每一个数的和。

输入格式

第一行包含两个整数 n,mn, mn,m,分别表示该数列数字的个数和操作的总个数。

第二行包含 nnn 个用空格分隔的整数,其中第 iii 个数字表示数列第 iii 项的初始值。

接下来 mmm 行每行包含 333 或 444 个整数,表示一个操作,具体如下:

1 x y k:将区间 [x,y][x, y][x,y] 内每个数加上 kkk。
2 x y:输出区间 [x,y][x, y][x,y] 内每个数的和。

输出格式

输出包含若干行整数,即为所有操作 2 的结果。
输入输出样例
输入 #1

5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4

输出 #1

11
8
20

说明/提示

对于 30%30%30% 的数据:n≤8n \le 8n≤8,m≤10m \le 10m≤10。
对于 70%70%70% 的数据:n≤103n \le {10}^3n≤103,m≤104m \le {10}^4m≤104。
对于 100%100%100% 的数据:1≤n,m≤1051 \le n, m \le {10}^51≤n,m≤105。

保证任意时刻数列中任意元素的和在 [−263,263)[-2^{63}, 2^{63})[−263,263) 内。

好久没敲线段树了,不过还能盲敲出来,比较意外。
改bug改了好一阵。。

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define int long long
using namespace std;

const int maxn = 1e5 + 10;
struct node{
	int l, r;
	int data;
	int mid() {
		return l + r >> 1;
	}
}tree[maxn << 2];
int a[maxn];
int lazy[maxn << 2];
int n, m;

void push_up(int root) {
	tree[root].data = tree[root << 1].data + tree[root << 1 | 1].data;
}

void build(int root, int l, int r) {
//	cout << root << " " << l << " " << r << endl;
	tree[root].l = l, tree[root].r = r;
	if(l == r) {
		tree[root].data = a[l];
		return;
	}
	int mid = l + r >> 1; 
	build(root << 1, l, mid);
	build(root << 1 | 1, mid + 1, r);
	push_up(root);
}

void push_down(int root) {
	if(lazy[root]) {
		tree[root << 1].data += lazy[root] * (tree[root << 1].r - tree[root << 1].l + 1);
		tree[root << 1 | 1].data += lazy[root] * (tree[root << 1 | 1].r - tree[root << 1 | 1].l + 1);
		lazy[root << 1] += lazy[root];
		lazy[root << 1 | 1] += lazy[root];
		lazy[root] = 0;
	}
}

void update(int root, int l, int r, int data) {
	if(tree[root].l >= l && tree[root].r <= r) {
		tree[root].data += data * (tree[root].r - tree[root].l + 1);
		lazy[root] += data;
		return;
	}
	push_down(root);
	int mid = tree[root].mid();
	if(mid >= l)
		update(root << 1, l, r, data);
	if(mid + 1 <= r)
		update(root << 1 | 1, l, r, data);
	push_up(root);
}

int query(int root, int l, int r) {
	int ans = 0;
	if(tree[root].l >= l && tree[root].r <= r) {
		ans += tree[root].data;		
//		cout << ans << " " << root << " " << tree[root].l << " " << tree[root].r << " " << l << " " << r << endl;
		return ans;
	}
	push_down(root);

	int mid = tree[root].mid();
	if(mid >= l)
		ans += query(root << 1, l, r);
	if(mid + 1 <= r)
		ans += query(root << 1 | 1, l, r);
	return ans;
}

signed main() {
	cin >> n >> m;
	for(int i = 1; i <= n; i++)	cin >> a[i];
	build(1, 1, n);
//	for(int i = 1; i <= n << 2; i++) {
//		cout << i << " " << tree[i].data << endl;
//	}
	int x, y, z, id;
	for(int i = 1; i <= m; i++) {
		cin >> id >> x >> y;
		if(id == 1)	cin >> z, update(1, x, y, z);
		else if(id == 2)	cout << query(1, x, y) << endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值