题目描述
如题,已知一个数列,你需要进行下面两种操作:
将某区间每一个数加上 kkk。
求出某区间每一个数的和。
输入格式
第一行包含两个整数 n,mn, mn,m,分别表示该数列数字的个数和操作的总个数。
第二行包含 nnn 个用空格分隔的整数,其中第 iii 个数字表示数列第 iii 项的初始值。
接下来 mmm 行每行包含 333 或 444 个整数,表示一个操作,具体如下:
1 x y k:将区间 [x,y][x, y][x,y] 内每个数加上 kkk。
2 x y:输出区间 [x,y][x, y][x,y] 内每个数的和。
输出格式
输出包含若干行整数,即为所有操作 2 的结果。
输入输出样例
输入 #1
5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4
输出 #1
11
8
20
说明/提示
对于 30%30%30% 的数据:n≤8n \le 8n≤8,m≤10m \le 10m≤10。
对于 70%70%70% 的数据:n≤103n \le {10}^3n≤103,m≤104m \le {10}^4m≤104。
对于 100%100%100% 的数据:1≤n,m≤1051 \le n, m \le {10}^51≤n,m≤105。
保证任意时刻数列中任意元素的和在 [−263,263)[-2^{63}, 2^{63})[−263,263) 内。
好久没敲线段树了,不过还能盲敲出来,比较意外。
改bug改了好一阵。。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#define int long long
using namespace std;
const int maxn = 1e5 + 10;
struct node{
int l, r;
int data;
int mid() {
return l + r >> 1;
}
}tree[maxn << 2];
int a[maxn];
int lazy[maxn << 2];
int n, m;
void push_up(int root) {
tree[root].data = tree[root << 1].data + tree[root << 1 | 1].data;
}
void build(int root, int l, int r) {
// cout << root << " " << l << " " << r << endl;
tree[root].l = l, tree[root].r = r;
if(l == r) {
tree[root].data = a[l];
return;
}
int mid = l + r >> 1;
build(root << 1, l, mid);
build(root << 1 | 1, mid + 1, r);
push_up(root);
}
void push_down(int root) {
if(lazy[root]) {
tree[root << 1].data += lazy[root] * (tree[root << 1].r - tree[root << 1].l + 1);
tree[root << 1 | 1].data += lazy[root] * (tree[root << 1 | 1].r - tree[root << 1 | 1].l + 1);
lazy[root << 1] += lazy[root];
lazy[root << 1 | 1] += lazy[root];
lazy[root] = 0;
}
}
void update(int root, int l, int r, int data) {
if(tree[root].l >= l && tree[root].r <= r) {
tree[root].data += data * (tree[root].r - tree[root].l + 1);
lazy[root] += data;
return;
}
push_down(root);
int mid = tree[root].mid();
if(mid >= l)
update(root << 1, l, r, data);
if(mid + 1 <= r)
update(root << 1 | 1, l, r, data);
push_up(root);
}
int query(int root, int l, int r) {
int ans = 0;
if(tree[root].l >= l && tree[root].r <= r) {
ans += tree[root].data;
// cout << ans << " " << root << " " << tree[root].l << " " << tree[root].r << " " << l << " " << r << endl;
return ans;
}
push_down(root);
int mid = tree[root].mid();
if(mid >= l)
ans += query(root << 1, l, r);
if(mid + 1 <= r)
ans += query(root << 1 | 1, l, r);
return ans;
}
signed main() {
cin >> n >> m;
for(int i = 1; i <= n; i++) cin >> a[i];
build(1, 1, n);
// for(int i = 1; i <= n << 2; i++) {
// cout << i << " " << tree[i].data << endl;
// }
int x, y, z, id;
for(int i = 1; i <= m; i++) {
cin >> id >> x >> y;
if(id == 1) cin >> z, update(1, x, y, z);
else if(id == 2) cout << query(1, x, y) << endl;
}
return 0;
}