- 博客(79)
- 资源 (41)
- 收藏
- 关注
原创 Dify新手小白手把手指导(一):AI面试官
4.在“提示词生成器”页面输入“我想让你担任 {{jobName}} 面试官。我将成为候选人,您将向我询问 {{jobName}} 开发工程师职位的面试问题。2.将“选择应用类型”选中为“聊天助手”;9.点击“开始对话”,得到应用界面。
2025-07-22 13:46:51
272
原创 Dify :适合AI方向创业的LLM应用开发平台
Dify(Define + Modify)是一个开源平台,致力于让开发者从原型设计到生产部署,快速构建可持续运营的 AI 应用。它通过直观的界面、强大的功能和灵活的部署方式,提供了一个完整的 LLMOps 解决方案,类似一个精心设计的开发脚手架。开源透明:Dify 在 GitHub 上完全开源(https://github.com/langgenius/dify),开发者可以自由查看代码、贡献功能或自定义开发。全面的功能支持:支持提示词编排、知识库管理、模型选择、工具集成和性能监控。易用性。
2025-07-18 09:27:12
1005
原创 开源的大语言模型(LLM)应用开发平台Dify
Dify(Define + Modify)是一个易用的 LLMOps 平台,旨在让开发者能够快速从原型设计到生产部署,构建可持续运营的 AI 应用。工作流编排:通过可视化画布构建和测试复杂的 AI 工作流。全面模型支持:支持数百种专有和开源 LLM,如 GPT、Mistral、Llama3,以及任何与 OpenAI API 兼容的模型。提示词 IDE:直观的界面用于设计提示词、比较模型性能,并支持文本转语音等功能。RAG 管道。
2025-07-18 08:51:48
967
原创 使用CrewAI创建一个研究团队
任务定义了代理需要完成的具体工作。编辑文件,添加两个任务:研究任务和报告任务。description: "针对{topic}进行深入研究,收集最新的信息和数据。expected_output: "一份包含{topic}最新进展的详细研究笔记。description: "根据研究员提供的笔记,撰写一份结构清晰的综合报告。expected_output: "一份格式化的Markdown报告,存储在output/report.md文件中。注意指定了报告的输出路径,确保在运行时生成的文件存储在正确位置。
2025-07-17 10:14:35
626
原创 如何在CrewAI中 打造高效智能体(Agents)
以 “角色 - 目标 - 背景故事” 为框架设计智能体,结合清晰、聚焦的任务设计,并通过迭代持续优化。行动建议从具体场景(如 “写一篇 AI 技术博客”)入手,定义 1-2 个智能体;先设计任务(明确步骤与输出),再设计智能体;测试后根据结果调整 —— 若输出差,优先检查任务是否清晰;若角色不匹配,再优化智能体定义;逐步尝试多智能体协作,体验技能互补的效果。通过以上方法,你可以构建出能高效协作、产出高质量结果的 AI 智能体团队,解决复杂任务。
2025-07-17 08:32:16
929
原创 CrewAI中构建智能体如何选择Crews 和Flows
CrewAI 是一个功能强大的开源 Python 框架,旨在协调自主的、角色扮演的 AI 代理,这些代理能够协作完成复杂任务。在使用 CrewAI 构建 AI 应用时,最关键的决策之一是选择合适的方法——是使用 Crews、Flows,还是两者的组合。本文基于 CrewAI 官方文档,探讨如何根据任务复杂性和精度要求评估 CrewAI 的用例。
2025-07-16 17:00:07
716
原创 使用 CrewAI 进行股票分析:自动化投资决策的新途径
CrewAI 旨在促进角色扮演 AI 代理之间的协作。在股票分析示例中,这些代理共同协作,提供全面的股票分析和投资建议。每个代理都有特定的角色和任务,通过相互配合,能够更高效地完成复杂的分析任务。
2025-07-16 14:06:47
831
原创 CrewAI 结合本地大模型 Llama3.1 研究AI 大模型在医疗领域的应用
,聚焦「AI 大模型在医疗领域的应用」主题,详细介绍如何通过 Ollama 部署的本地大模型 Llama3.1,自动生成该领域的研究报告。本地大模型部署模式可保障医疗数据隐私性,同时降低对云端 API 的依赖,适合医疗相关研究场景。该方案兼顾数据隐私(本地模型)和信息时效性(可选网络搜索),适合医疗相关的研究场景。,定义两个协作智能体:「医疗领域研究员」负责收集信息,「医疗报告分析师」负责整理报告。核心修改:让智能体调用本地 Llama3.1,而非云端模型。运行成功后,报告将保存至。
2025-07-16 10:20:43
988
原创 CrewAI 结合 Ollama 本地大模型 Llama3.1 获取研究报告
本指导文档将基于 CrewAI 官方快速入门教程(),详细介绍如何通过 Ollama 部署的本地大模型 Llama3.1,实现 AI 研究报告的自动生成。相比依赖云端 API,本地大模型能在保证数据隐私的同时降低使用成本,适合对数据安全性有要求的场景。
2025-07-16 09:38:09
477
原创 通过 Ollama 获取并运行本地大型语言模型(LLM)
Ollama 允许通过Modelfile自定义模型,适合需要特定配置或导入外部模型(例如 GGUF 格式)的场景。
2025-07-16 09:11:47
943
原创 CrewAI 创建 AI 智能体快速入门指南
您可以创建自定义工具以扩展智能体功能。name: str = "文件读取工具"description: str = "根据文件路径读取文件内容"...,
2025-07-15 15:36:02
258
原创 使用 CrewAI 创建新项目流程概览
CrewAI 推荐使用 YAML 模板来定义智能体和任务。编辑和文件以配置您的 AI 团队行为。通过以上步骤,您可以使用 CrewAI 成功创建一个新项目,定义智能体和任务,并运行多智能体协作工作流。CrewAI 的 YAML 模板和模块化设计使其易于扩展和定制,适合从简单到复杂的企业级 AI 自动化场景。立即开始构建您的第一个 AI 团队吧!参考CrewAI 安装文档CrewAI 快速入门CrewAI 社区支持。
2025-07-15 11:14:01
803
原创 CrewAI可用免费模型汇总
CrewAI 结合免费开源模型为开发者提供了一个经济高效且灵活的解决方案。通过 Ollama,开发者可以轻松部署 LLaMA、Qwen、Mistral、OpenHermes、Phi 和 Gemma 等模型,满足多种任务需求。这些模型在本地运行不仅降低了成本,还增强了数据隐私性。尽管免费模型在性能上可能略逊于商业模型,但在大多数场景下已足够应对 CrewAI 的多智能体协作需求。开发者可根据任务复杂度和硬件条件选择合适的模型,结合 CrewAI 的角色扮演和任务管理功能,构建高效的 AI 协作系统。
2025-07-15 10:36:41
1117
原创 uv 使用指导文档
uv 是一个功能强大、性能优越的 Python 工具,集成了包管理、虚拟环境管理、脚本运行和项目构建等功能。通过其快速的依赖解析和简化的工作流,uv 大幅提升了 Python 开发效率。无论是开发单文件脚本还是复杂项目,uv 都能提供高效支持。更多详细信息,请访问uv 官方文档。
2025-07-15 09:49:08
852
原创 CrewAI 使用指导文档
CrewAI 是一个轻量、高性能的框架,专注于多 AI 代理协作,能够通过角色扮演和任务分配实现复杂任务的自动化。它支持灵活的定制、外部工具集成以及多种大型语言模型(LLM)的使用,适用于从简单任务到企业级复杂场景的自动化需求。编辑文件,定义两个代理:研究员和报告撰写者。writer:编辑文件,定义两个任务:研究和报告撰写。CrewAI 提供了一个强大而灵活的框架,用于构建协作 AI 代理团队。通过角色驱动的设计、任务管理和外部工具集成,用户可以轻松实现复杂任务的自动化。
2025-07-15 09:36:48
888
原创 ChatDev 简易指导文档
ChatDev 允许用户自定义软件开发流程(ChatChain),例如。配置文件位于,可调整阶段、循环次数和是否启用反思。示例:修改 ChatChainConfig.json启用 Git 管理后,程序员智能体将使用 GitHub 进行版本控制。
2025-07-14 16:19:49
563
原创 AutoGen 简易指导文档
AutoGen 支持集成外部工具或 API。raise ValueError("不支持的操作符")description="执行基本算术运算"智能体可以通过自然语言调用此工具,例如“请计算 5 + 3”。
2025-07-14 16:12:25
690
原创 多代理框架MetaGPT
MetaGPT 通过为多个代理分配不同角色(如产品经理、架构师、项目经理、工程师等),模拟软件开发团队的协作,适用于软件开发、研究、游戏开发等多种场景。例如,输入metagpt "设计一个类似今日头条的推荐系统",即可生成从需求分析到代码实现的完整输出。用户可通过定义Action和Role自定义代理。例如,创建一个"""通过_watch这使代理观察其他代理的输出并触发相应动作。
2025-07-14 09:04:03
937
原创 Dify 指导文档
Dify 是一款开源的大语言模型(LLM)应用开发平台,旨在通过融合后端即服务(Backend as Service)与 LLMOps 的理念,帮助开发者快速构建生产级的生成式 AI 应用。无论您是专业开发者还是非技术人员,Dify 都能通过其直观的界面和强大的功能,让您轻松参与 AI 应用的开发与运营。Dify 的名字源自“Define + Modify”,寓意定义并持续改进您的 AI 应用,同时也代表“Do it for you”,即为您提供一站式解决方案。
2025-07-14 08:43:21
742
原创 Auto-GPT 简易教程
编辑或.env文件以调整:LLM 模型:默认使用gpt-4,可切换为或其他兼容模型。记忆设置:调整上下文窗口大小(如 4096 令牌)。工具启用:启用/禁用 Web 搜索、文件写入等功能。在目录下创建新工具脚本。参考现有工具(如),实现工具逻辑。在配置文件中注册新工具。# 实现搜索逻辑(例如调用 Google Custom Search API)
2025-07-11 17:21:15
976
原创 RD-Agent(Q) :首个以数据为中心的量化多智能体框架
高维度:市场数据包含大量变量,传统方法难以有效处理。非平稳性:市场动态随时间变化,模型需具备适应性。持续波动性:价格波动频繁,策略需兼顾预测准确性和稳健性。自动化程度低,依赖人工干预。可解释性差,难以追溯决策逻辑。因子挖掘(factor mining)与模型创新(model innovation)之间缺乏协调优化。RD-Agent(Q) 通过多智能体协作和数据驱动的方法,解决了这些问题,实现了全栈量化策略的自动化研发。
2025-07-11 15:21:44
1104
原创 Qlib使用强化学习
Qlib 的强化学习框架通过和等组件支持量化投资中的复杂决策优化,例如订单执行和投资组合管理。强化学习通过与环境的交互学习最优策略,最大化累积回报。环境(Environment):模拟金融市场,基于历史数据提供状态、动作和回报。策略(Policy):强化学习代理(Agent)根据当前状态选择动作,例如买入或卖出股票。执行器(Executor):处理订单执行逻辑,支持多层次策略优化(例如,优化特定投资组合的订单执行策略)。回测(Backtest):评估强化学习策略的性能,生成收益、风险等指标。
2025-07-11 11:24:21
809
原创 通过investment_data获取最新量化投资数据
https://github.com/chenditc/investment_data 是由开发者 chenditc 维护的开源项目,专注于为量化金融研究提供高质量的中国市场金融数据。该项目与 DoltHub 数据库(https://www.dolthub.com/repositories/chenditc/investment_data)紧密关联,主要提供与 Qlib 平台兼容的数据支持。
2025-07-11 11:04:19
561
原创 Qlib中的TopkDropout策略详解
Qlib的TopkDropoutStrategy是一种基于预测分数的投资组合管理策略,通过动态调整持仓优化投资回报。该策略定期选择预测分数最高的topk只股票持有,同时剔除表现最差的n_drop只股票并买入同等数量的新股票,保持固定持仓规模和可控换手率。其核心优势在于规则简单、易于实现,适合中高频交易场景。但策略表现依赖预测分数质量,且高换手率可能导致交易成本显著影响收益。用户可通过调整topk、n_drop等参数优化策略,并建议结合高质量预测模型和真实交易成本进行回测评估。
2025-07-11 10:12:18
1398
原创 Qlib中的Alpha158具体包含哪些数据
Alpha158 的特征可以分为以下几大类,涵盖了价格、成交量和滚动窗口(rolling window)等多种计算方式。这些特征是基于日频 OHLCV 数据,通过数学公式和统计方法生成的因子。KBar 因子(K 线相关因子): 这些因子基于 K 线(KBar)的价格关系,主要描述开盘、收盘、最高、最低价之间的相对变化。示例包括:KMID:(close - open) / open(收盘价相对于开盘价的变化率)。KLEN:(high - low) / open(最高价与最低价的波动幅度相对开盘价)。
2025-07-11 09:37:25
987
原创 使用 Qlib 获取股票数据
如果您想使用其他数据源(如 Yahoo Finance 或其他市场数据),需要手动准备数据并转换为 Qlib 格式。Qlib 支持 CSV 格式的数据,具体格式要求请参考Qlib 文档。
2025-07-10 16:21:51
461
原创 运用Qlib 库实现了一个基于 TopkDropout 策略的股票回测系统
使用TopkDropout策略,每日调整股票组合完整回测流程,包括风险分析和绩效评估。
2025-07-10 15:54:11
287
原创 使用Qlib基于LightGBM预测沪深300涨跌
这段代码适用于量化金融研究,目标是构建一个基于机器学习的交易策略,通过历史数据预测股票表现,生成交易信号。Alpha158 提供的 158 个技术指标为模型提供了丰富的特征输入,而 LightGBM 模型的高效性和准确性使其适合处理高维金融数据。Qlib 是一个专为量化金融和算法交易研究设计的开源库。本文配置一个基于 LightGBM 的梯度提升决策树(GBDT)模型,并使用金融数据集(包含 158 个技术指标特征)进行训练和预测。
2025-07-10 15:13:30
660
原创 OpenCV-Python基础教程
OpenCV (Open Source Computer Vision Library) 是一个非常强大的计算机视觉库,广泛应用于图像处理、视频分析等领域。本教程将介绍如何使用 OpenCV-Python 进行基本的图像处理操作,包括读取和显示图像、基本图像操作(如调整大小、旋转)以及简单的图像滤波技术。
2024-08-05 08:40:07
1127
原创 Streamlit基础教程
首先确保你的环境中已经安装了 Python(推荐使用 Python 3.7 或更高版本)。这将打开一个新的浏览器窗口或标签页,显示你的 Streamlit 应用程序。在你的项目文件夹中创建一个新的 Python 文件,例如。编写代码来定义你的应用程序。在命令行中导航到包含。
2024-08-05 08:37:22
513
原创 Pandas 基础教程
Pandas 是 Python 中用于数据分析和数据处理的强大库。它提供了两种主要的数据结构:Series 和 DataFrame,以及用于操作这些数据结构的工具。本教程将介绍 Pandas 的安装、基本用法、数据清洗以及一些高级功能。Pandas 是 Python 社区中最常用的用于数据处理和分析的库之一。它提供了高效的数据结构 Series 和 DataFrame,以及用于数据清洗、处理、分析和可视化的一系列工具。
2024-08-02 16:02:32
594
1
原创 NumPy 基础教程
NumPy 是 Python 中用于科学计算的基础包。它提供了一个高性能的多维数组对象,以及用于操作数组的工具。本教程将介绍 NumPy 的安装、基本用法、数组操作以及一些高级功能。NumPy 是 Python 社区中最常用的科学计算库之一,它提供了高性能的多维数组对象以及用于处理这些数组的工具。NumPy 的数组(称为 ndarray)比 Python 的内置列表更加高效,尤其是在进行数学运算时。通常情况下,安装 Anaconda 或者 Miniconda 就可以直接使用 NumPy。
2024-08-02 15:59:03
561
原创 计算机视觉库Kornia基础教程
Kornia是一个用于计算机视觉任务的Python库,它提供了丰富的图像处理和计算机视觉操作接口。本教程将介绍Kornia的基本安装、使用方法以及一些实用的功能示例。
2024-08-02 09:35:02
1583
原创 Scikit-Learn 基础教程
首先,确保你的 Python 环境已安装好。数据预处理是机器学习中的一个重要步骤。Scikit-Learn 包含了一些内置数据集,例如鸢尾花数据集 (选择一个模型并训练它。
2024-08-01 16:54:33
418
原创 通过yfinance获取股票历史数据
以比亚迪为例,要获取A股比亚迪的十年的历史数据并保存为CSV文件,我们可以使用Python中的第三方库如pandas和yfinance。yfinance库是一个用于下载雅虎财经数据的工具,它支持股票、期权等金融工具的数据获取。
2024-08-01 16:20:02
6045
4
原创 通过颜色反卷积进行组织化学染色的定量分析
颜色反卷积(Color Deconvolution)是免疫组织化学(Immunohistochemistry, IHC)和其他组织染色技术中常用的一种图像分析方法。它被用来从复合染色图像中分离出单独的染色成分,以便进行更精确的定量分析。这种方法特别适用于多重染色实验,其中不同的染色标记使用不同的颜色,如DAB(二氨基联苯胺,产生棕色)和Fast Red(产生红色)。颜色反卷解的基本思想是将彩色图像分解为多个单色图像,每个单色图像代表一个特定的染色成分。
2024-08-01 16:04:07
1610
cudnn-8.0-windows7-x64-v7.1.3.zip
2018-04-20
cudnn-9.0-windows10-x64-v7.1.3.zip
2018-04-20
cudnn-9.1-windows7-x64-v7.1.3.zip
2018-04-20
cudnn-9.0-windows7-x64-v7.1.3.zip
2018-04-20
Python-3.6.6.tgz
2018-07-26
nccl-repo-ubuntu1604-2.1.15-ga-cuda8.0_1-1_amd64.deb
2018-07-24
tensorflow1.6-cuda9.1-python3.6
2018-07-19
cuda9.1-tensorflow1.6-python3.5
2018-07-19
nccl-repo-ubuntu1604-2.1.15-ga-cuda9.1_1-1_amd64.deb
2018-07-24
tensorflow_gpu-1.9.0-cp36-cp36m-manylinux1_x86_64.whl
2018-07-27
cudnn-10.2-linux-x64-v8.0.0.180.tgz
2020-07-09
nccl-repo-ubuntu1604-2.2.13-ga-cuda9.0_1-1_amd64.deb
2018-07-24
ISBI Challenge: Segmentation of neuronal structures in EM stacks
2020-07-22
libtorch-win-shared-with-deps-1.5.1+cpu.zip
2020-07-21
tensorflow_gpu-1.10.0-cp36-cp36m-manylinux1_x86_64.whl
2018-08-15
nccl-repo-ubuntu1604-2.2.12-ga-cuda9.0_1-1_amd64.deb
2018-07-24
torch-1.0.0-cp35-cp35m-linux_x86_64.whl
2020-06-12
1660Ti+ubuntu18.04+cuda10.0+cudnn+tensorflow-gpu1.13.odt
2019-06-14
nccl-repo-ubuntu1604-2.2.12-ga-cuda9.2_1-1_amd64.deb
2018-07-24
nccl-repo-ubuntu1604-2.1.15-ga-cuda9.0_1-1_amd64.deb
2018-07-24
nccl-repo-ubuntu1604-2.2.13-ga-cuda8.0_1-1_amd64.deb
2018-07-24
nccl-repo-ubuntu1604-2.2.13-ga-cuda9.2_1-1_amd64.deb
2018-07-24
nccl-repo-ubuntu1604-2.2.12-ga-cuda8.0_1-1_amd64.deb
2018-07-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人