自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(79)
  • 资源 (41)
  • 收藏
  • 关注

原创 Dify新手小白手把手指导(一):AI面试官

4.在“提示词生成器”页面输入“我想让你担任 {{jobName}} 面试官。我将成为候选人,您将向我询问 {{jobName}} 开发工程师职位的面试问题。2.将“选择应用类型”选中为“聊天助手”;9.点击“开始对话”,得到应用界面。

2025-07-22 13:46:51 272

原创 Dify接入微信

本文将指导您通过 LangBot 将 Dify 应用快速接入微信平台,实现在微信生态中部署智能聊天机器人。

2025-07-21 11:26:31 642

原创 Dify :适合AI方向创业的LLM应用开发平台

Dify(Define + Modify)是一个开源平台,致力于让开发者从原型设计到生产部署,快速构建可持续运营的 AI 应用。它通过直观的界面、强大的功能和灵活的部署方式,提供了一个完整的 LLMOps 解决方案,类似一个精心设计的开发脚手架。开源透明:Dify 在 GitHub 上完全开源(https://github.com/langgenius/dify),开发者可以自由查看代码、贡献功能或自定义开发。全面的功能支持:支持提示词编排、知识库管理、模型选择、工具集成和性能监控。易用性。

2025-07-18 09:27:12 1005

原创 开源的大语言模型(LLM)应用开发平台Dify

Dify(Define + Modify)是一个易用的 LLMOps 平台,旨在让开发者能够快速从原型设计到生产部署,构建可持续运营的 AI 应用。工作流编排:通过可视化画布构建和测试复杂的 AI 工作流。全面模型支持:支持数百种专有和开源 LLM,如 GPT、Mistral、Llama3,以及任何与 OpenAI API 兼容的模型。提示词 IDE:直观的界面用于设计提示词、比较模型性能,并支持文本转语音等功能。RAG 管道。

2025-07-18 08:51:48 967

原创 使用CrewAI创建一个研究团队

任务定义了代理需要完成的具体工作。编辑文件,添加两个任务:研究任务和报告任务。description: "针对{topic}进行深入研究,收集最新的信息和数据。expected_output: "一份包含{topic}最新进展的详细研究笔记。description: "根据研究员提供的笔记,撰写一份结构清晰的综合报告。expected_output: "一份格式化的Markdown报告,存储在output/report.md文件中。注意指定了报告的输出路径,确保在运行时生成的文件存储在正确位置。

2025-07-17 10:14:35 626

原创 如何在CrewAI中 打造高效智能体(Agents)

以 “角色 - 目标 - 背景故事” 为框架设计智能体,结合清晰、聚焦的任务设计,并通过迭代持续优化。行动建议从具体场景(如 “写一篇 AI 技术博客”)入手,定义 1-2 个智能体;先设计任务(明确步骤与输出),再设计智能体;测试后根据结果调整 —— 若输出差,优先检查任务是否清晰;若角色不匹配,再优化智能体定义;逐步尝试多智能体协作,体验技能互补的效果。通过以上方法,你可以构建出能高效协作、产出高质量结果的 AI 智能体团队,解决复杂任务。

2025-07-17 08:32:16 929

原创 CrewAI中构建智能体如何选择Crews 和Flows

CrewAI 是一个功能强大的开源 Python 框架,旨在协调自主的、角色扮演的 AI 代理,这些代理能够协作完成复杂任务。在使用 CrewAI 构建 AI 应用时,最关键的决策之一是选择合适的方法——是使用 Crews、Flows,还是两者的组合。本文基于 CrewAI 官方文档,探讨如何根据任务复杂性和精度要求评估 CrewAI 的用例。

2025-07-16 17:00:07 716

原创 使用 CrewAI 进行股票分析:自动化投资决策的新途径

CrewAI 旨在促进角色扮演 AI 代理之间的协作。在股票分析示例中,这些代理共同协作,提供全面的股票分析和投资建议。每个代理都有特定的角色和任务,通过相互配合,能够更高效地完成复杂的分析任务。

2025-07-16 14:06:47 831

原创 CrewAI 结合本地大模型 Llama3.1 研究AI 大模型在医疗领域的应用

,聚焦「AI 大模型在医疗领域的应用」主题,详细介绍如何通过 Ollama 部署的本地大模型 Llama3.1,自动生成该领域的研究报告。本地大模型部署模式可保障医疗数据隐私性,同时降低对云端 API 的依赖,适合医疗相关研究场景。该方案兼顾数据隐私(本地模型)和信息时效性(可选网络搜索),适合医疗相关的研究场景。,定义两个协作智能体:「医疗领域研究员」负责收集信息,「医疗报告分析师」负责整理报告。核心修改:让智能体调用本地 Llama3.1,而非云端模型。运行成功后,报告将保存至。

2025-07-16 10:20:43 988

原创 CrewAI 结合 Ollama 本地大模型 Llama3.1 获取研究报告

本指导文档将基于 CrewAI 官方快速入门教程(),详细介绍如何通过 Ollama 部署的本地大模型 Llama3.1,实现 AI 研究报告的自动生成。相比依赖云端 API,本地大模型能在保证数据隐私的同时降低使用成本,适合对数据安全性有要求的场景。

2025-07-16 09:38:09 477

原创 通过 Ollama 获取并运行本地大型语言模型(LLM)

Ollama 允许通过Modelfile自定义模型,适合需要特定配置或导入外部模型(例如 GGUF 格式)的场景。

2025-07-16 09:11:47 943

原创 CrewAI 创建 AI 智能体快速入门指南

您可以创建自定义工具以扩展智能体功能。name: str = "文件读取工具"description: str = "根据文件路径读取文件内容"...,

2025-07-15 15:36:02 258

原创 使用 CrewAI 创建新项目流程概览

CrewAI 推荐使用 YAML 模板来定义智能体和任务。编辑和文件以配置您的 AI 团队行为。通过以上步骤,您可以使用 CrewAI 成功创建一个新项目,定义智能体和任务,并运行多智能体协作工作流。CrewAI 的 YAML 模板和模块化设计使其易于扩展和定制,适合从简单到复杂的企业级 AI 自动化场景。立即开始构建您的第一个 AI 团队吧!参考CrewAI 安装文档CrewAI 快速入门CrewAI 社区支持。

2025-07-15 11:14:01 803

原创 CrewAI可用免费模型汇总

CrewAI 结合免费开源模型为开发者提供了一个经济高效且灵活的解决方案。通过 Ollama,开发者可以轻松部署 LLaMA、Qwen、Mistral、OpenHermes、Phi 和 Gemma 等模型,满足多种任务需求。这些模型在本地运行不仅降低了成本,还增强了数据隐私性。尽管免费模型在性能上可能略逊于商业模型,但在大多数场景下已足够应对 CrewAI 的多智能体协作需求。开发者可根据任务复杂度和硬件条件选择合适的模型,结合 CrewAI 的角色扮演和任务管理功能,构建高效的 AI 协作系统。

2025-07-15 10:36:41 1117

原创 uv 使用指导文档

uv 是一个功能强大、性能优越的 Python 工具,集成了包管理、虚拟环境管理、脚本运行和项目构建等功能。通过其快速的依赖解析和简化的工作流,uv 大幅提升了 Python 开发效率。无论是开发单文件脚本还是复杂项目,uv 都能提供高效支持。更多详细信息,请访问uv 官方文档。

2025-07-15 09:49:08 852

原创 CrewAI 使用指导文档

CrewAI 是一个轻量、高性能的框架,专注于多 AI 代理协作,能够通过角色扮演和任务分配实现复杂任务的自动化。它支持灵活的定制、外部工具集成以及多种大型语言模型(LLM)的使用,适用于从简单任务到企业级复杂场景的自动化需求。编辑文件,定义两个代理:研究员和报告撰写者。writer:编辑文件,定义两个任务:研究和报告撰写。CrewAI 提供了一个强大而灵活的框架,用于构建协作 AI 代理团队。通过角色驱动的设计、任务管理和外部工具集成,用户可以轻松实现复杂任务的自动化。

2025-07-15 09:36:48 888

原创 ChatDev 简易指导文档

ChatDev 允许用户自定义软件开发流程(ChatChain),例如。配置文件位于,可调整阶段、循环次数和是否启用反思。示例:修改 ChatChainConfig.json启用 Git 管理后,程序员智能体将使用 GitHub 进行版本控制。

2025-07-14 16:19:49 563

原创 AutoGen 简易指导文档

AutoGen 支持集成外部工具或 API。raise ValueError("不支持的操作符")description="执行基本算术运算"智能体可以通过自然语言调用此工具,例如“请计算 5 + 3”。

2025-07-14 16:12:25 690

原创 多代理框架MetaGPT

MetaGPT 通过为多个代理分配不同角色(如产品经理、架构师、项目经理、工程师等),模拟软件开发团队的协作,适用于软件开发、研究、游戏开发等多种场景。例如,输入metagpt "设计一个类似今日头条的推荐系统",即可生成从需求分析到代码实现的完整输出。用户可通过定义Action和Role自定义代理。例如,创建一个"""通过_watch这使代理观察其他代理的输出并触发相应动作。

2025-07-14 09:04:03 937

原创 Dify 指导文档

Dify 是一款开源的大语言模型(LLM)应用开发平台,旨在通过融合后端即服务(Backend as Service)与 LLMOps 的理念,帮助开发者快速构建生产级的生成式 AI 应用。无论您是专业开发者还是非技术人员,Dify 都能通过其直观的界面和强大的功能,让您轻松参与 AI 应用的开发与运营。Dify 的名字源自“Define + Modify”,寓意定义并持续改进您的 AI 应用,同时也代表“Do it for you”,即为您提供一站式解决方案。

2025-07-14 08:43:21 742

原创 Auto-GPT 简易教程

编辑或.env文件以调整:LLM 模型:默认使用gpt-4,可切换为或其他兼容模型。记忆设置:调整上下文窗口大小(如 4096 令牌)。工具启用:启用/禁用 Web 搜索、文件写入等功能。在目录下创建新工具脚本。参考现有工具(如),实现工具逻辑。在配置文件中注册新工具。# 实现搜索逻辑(例如调用 Google Custom Search API)

2025-07-11 17:21:15 976

原创 RD-Agent(Q) :首个以数据为中心的量化多智能体框架

高维度:市场数据包含大量变量,传统方法难以有效处理。非平稳性:市场动态随时间变化,模型需具备适应性。持续波动性:价格波动频繁,策略需兼顾预测准确性和稳健性。自动化程度低,依赖人工干预。可解释性差,难以追溯决策逻辑。因子挖掘(factor mining)与模型创新(model innovation)之间缺乏协调优化。RD-Agent(Q) 通过多智能体协作和数据驱动的方法,解决了这些问题,实现了全栈量化策略的自动化研发。

2025-07-11 15:21:44 1104

原创 Qlib使用强化学习

Qlib 的强化学习框架通过和等组件支持量化投资中的复杂决策优化,例如订单执行和投资组合管理。强化学习通过与环境的交互学习最优策略,最大化累积回报。环境(Environment):模拟金融市场,基于历史数据提供状态、动作和回报。策略(Policy):强化学习代理(Agent)根据当前状态选择动作,例如买入或卖出股票。执行器(Executor):处理订单执行逻辑,支持多层次策略优化(例如,优化特定投资组合的订单执行策略)。回测(Backtest):评估强化学习策略的性能,生成收益、风险等指标。

2025-07-11 11:24:21 809

原创 通过investment_data获取最新量化投资数据

https://github.com/chenditc/investment_data 是由开发者 chenditc 维护的开源项目,专注于为量化金融研究提供高质量的中国市场金融数据。该项目与 DoltHub 数据库(https://www.dolthub.com/repositories/chenditc/investment_data)紧密关联,主要提供与 Qlib 平台兼容的数据支持。

2025-07-11 11:04:19 561

原创 Qlib中的TopkDropout策略详解

Qlib的TopkDropoutStrategy是一种基于预测分数的投资组合管理策略,通过动态调整持仓优化投资回报。该策略定期选择预测分数最高的topk只股票持有,同时剔除表现最差的n_drop只股票并买入同等数量的新股票,保持固定持仓规模和可控换手率。其核心优势在于规则简单、易于实现,适合中高频交易场景。但策略表现依赖预测分数质量,且高换手率可能导致交易成本显著影响收益。用户可通过调整topk、n_drop等参数优化策略,并建议结合高质量预测模型和真实交易成本进行回测评估。

2025-07-11 10:12:18 1398

原创 Qlib中的Alpha158具体包含哪些数据

Alpha158 的特征可以分为以下几大类,涵盖了价格、成交量和滚动窗口(rolling window)等多种计算方式。这些特征是基于日频 OHLCV 数据,通过数学公式和统计方法生成的因子。KBar 因子(K 线相关因子): 这些因子基于 K 线(KBar)的价格关系,主要描述开盘、收盘、最高、最低价之间的相对变化。示例包括:KMID:(close - open) / open(收盘价相对于开盘价的变化率)。KLEN:(high - low) / open(最高价与最低价的波动幅度相对开盘价)。

2025-07-11 09:37:25 987

原创 使用 Qlib 获取股票数据

如果您想使用其他数据源(如 Yahoo Finance 或其他市场数据),需要手动准备数据并转换为 Qlib 格式。Qlib 支持 CSV 格式的数据,具体格式要求请参考Qlib 文档。

2025-07-10 16:21:51 461

原创 运用Qlib 库实现了一个基于 TopkDropout 策略的股票回测系统

使用TopkDropout策略,每日调整股票组合完整回测流程,包括风险分析和绩效评估。

2025-07-10 15:54:11 287

原创 使用Qlib基于LightGBM预测沪深300涨跌

这段代码适用于量化金融研究,目标是构建一个基于机器学习的交易策略,通过历史数据预测股票表现,生成交易信号。Alpha158 提供的 158 个技术指标为模型提供了丰富的特征输入,而 LightGBM 模型的高效性和准确性使其适合处理高维金融数据。Qlib 是一个专为量化金融和算法交易研究设计的开源库。本文配置一个基于 LightGBM 的梯度提升决策树(GBDT)模型,并使用金融数据集(包含 158 个技术指标特征)进行训练和预测。

2025-07-10 15:13:30 660

原创 qlib数据下载

下的爬虫脚本收集的公开数据创建,这些爬虫脚本已发布在同一仓库中,用户可以使用该数据集创建相同的数据集。

2025-07-10 10:01:16 292

原创 qlib安装

pip install pyqlib

2025-07-10 09:10:52 366

原创 OpenCV-Python基础教程

OpenCV (Open Source Computer Vision Library) 是一个非常强大的计算机视觉库,广泛应用于图像处理、视频分析等领域。本教程将介绍如何使用 OpenCV-Python 进行基本的图像处理操作,包括读取和显示图像、基本图像操作(如调整大小、旋转)以及简单的图像滤波技术。

2024-08-05 08:40:07 1127

原创 Streamlit基础教程

首先确保你的环境中已经安装了 Python(推荐使用 Python 3.7 或更高版本)。这将打开一个新的浏览器窗口或标签页,显示你的 Streamlit 应用程序。在你的项目文件夹中创建一个新的 Python 文件,例如。编写代码来定义你的应用程序。在命令行中导航到包含。

2024-08-05 08:37:22 513

原创 Pandas 基础教程

Pandas 是 Python 中用于数据分析和数据处理的强大库。它提供了两种主要的数据结构:Series 和 DataFrame,以及用于操作这些数据结构的工具。本教程将介绍 Pandas 的安装、基本用法、数据清洗以及一些高级功能。Pandas 是 Python 社区中最常用的用于数据处理和分析的库之一。它提供了高效的数据结构 Series 和 DataFrame,以及用于数据清洗、处理、分析和可视化的一系列工具。

2024-08-02 16:02:32 594 1

原创 NumPy 基础教程

NumPy 是 Python 中用于科学计算的基础包。它提供了一个高性能的多维数组对象,以及用于操作数组的工具。本教程将介绍 NumPy 的安装、基本用法、数组操作以及一些高级功能。NumPy 是 Python 社区中最常用的科学计算库之一,它提供了高性能的多维数组对象以及用于处理这些数组的工具。NumPy 的数组(称为 ndarray)比 Python 的内置列表更加高效,尤其是在进行数学运算时。通常情况下,安装 Anaconda 或者 Miniconda 就可以直接使用 NumPy。

2024-08-02 15:59:03 561

原创 PyTorch 基础教程

Python深色版本37 # 定义网络层1113 # 定义前向传播过程18。

2024-08-02 09:58:36 590

原创 计算机视觉库Kornia基础教程

Kornia是一个用于计算机视觉任务的Python库,它提供了丰富的图像处理和计算机视觉操作接口。本教程将介绍Kornia的基本安装、使用方法以及一些实用的功能示例。

2024-08-02 09:35:02 1583

原创 Scikit-Learn 基础教程

首先,确保你的 Python 环境已安装好。数据预处理是机器学习中的一个重要步骤。Scikit-Learn 包含了一些内置数据集,例如鸢尾花数据集 (选择一个模型并训练它。

2024-08-01 16:54:33 418

原创 通过yfinance获取股票历史数据

以比亚迪为例,要获取A股比亚迪的十年的历史数据并保存为CSV文件,我们可以使用Python中的第三方库如pandas和yfinance。yfinance库是一个用于下载雅虎财经数据的工具,它支持股票、期权等金融工具的数据获取。

2024-08-01 16:20:02 6045 4

原创 通过颜色反卷积进行组织化学染色的定量分析

颜色反卷积(Color Deconvolution)是免疫组织化学(Immunohistochemistry, IHC)和其他组织染色技术中常用的一种图像分析方法。它被用来从复合染色图像中分离出单独的染色成分,以便进行更精确的定量分析。这种方法特别适用于多重染色实验,其中不同的染色标记使用不同的颜色,如DAB(二氨基联苯胺,产生棕色)和Fast Red(产生红色)。颜色反卷解的基本思想是将彩色图像分解为多个单色图像,每个单色图像代表一个特定的染色成分。

2024-08-01 16:04:07 1610

caffe_train安装以及COCO数据集的训练

caffe_train安装以及COCO数据集的训练

2018-03-02

基于yolo的目标位置实时检测.docx

使用yolo训练自己的数据集对单个目标进行检测,仅供参考,删除了一些图片.

2018-03-15

cudnn-8.0-windows7-x64-v7.1.3.zip

英伟达深度学习开发工具 cuDNN v7.1.3 (April 17, 2018), for CUDA 8.0 cuDNN v7.1.3 Library for Windows 7

2018-04-20

cudnn-9.0-windows7-x64-v7.1.zip

英伟达深度学习开发工具cudnn-9.0-windows7-x64-v7.1.zip

2018-03-13

cudnn-9.0-windows10-x64-v7.1.3.zip

英伟达深度学习开发工具 cuDNN v7.1.3 (April 17, 2018), for CUDA 9.0 cuDNN v7.1.3 Library for Windows 10

2018-04-20

cudnn-9.1-windows7-x64-v7.1.3.zip

英伟达深度学习开发工具 cuDNN v7.1.3 (April 17, 2018), for CUDA 9.1 cuDNN v7.1.3 Library for Windows 7

2018-04-20

cudnn-9.1-windows10-x64-v7.1.zip(cudnn7.1.3)

英伟达深度学习开发工具 文win10 cuda9.1 cudnn7.1.3

2018-04-20

JetPack-L4T-3.1-linux-x64.run

JetPack-L4T-3.1-linux-x64.run

2018-02-24

JetPack-L4T-3.2-linux-x64_b157.run

JetPack-L4T-3.2-linux-x64_b157.run

2018-02-24

cudnn-9.1-windows10-x64-v7.1.zip

英伟达深度学习工具cuDNN v7.1.1 (Feb 28, 2018), for CUDA 9.1

2018-03-13

cudnn-8.0-windows7-x64-v7.zip

cudnn-8.0-windows7-x64-v7.zip

2018-02-23

cudnn-9.0-windows7-x64-v7.1.3.zip

英伟达深度学习开发工具 cuDNN v7.1.3 (April 17, 2018), for CUDA 9.0 cuDNN v7.1.3 Library for Windows 7

2018-04-20

Python-3.6.6.tgz

python3.6.6源码 tar xfz Python-3.6.6.tgz ./configure --prefix=/usr/bin/python3.6 sudo make suao make install

2018-07-26

allennlp能实现的功能

对allennlp能实现的功能做了一个总结,还有实例demo的截图。

2018-07-18

nccl-repo-ubuntu1604-2.1.15-ga-cuda8.0_1-1_amd64.deb

ubuntu16.04 cuda8.0 nccl2.1.15 多GPU交互

2018-07-24

tensorflow1.6-cuda9.1-python3.6

cuda9.1版本的tensorflow1.6,基于python3.6,名字中没写是GPU还是CPU版本。但这个就是GPU版本的,用了就知道了。

2018-07-19

cuda9.1-tensorflow1.6-python3.5

基于python3.5和cuda9.1的tensorflow的GPU版本1.6.1。名字上面没有写GPU,但确实是GPU版本,用了就知道了。

2018-07-19

cudnn-8.0-windows10-x64-v7.zip

cudnn-8.0-windows10-x64-v7.zip

2018-02-23

nccl-repo-ubuntu1604-2.1.15-ga-cuda9.1_1-1_amd64.deb

cuda9.1 nccl2.1.15 英伟达多GPU交互工具,测试可用。

2018-07-24

cudnn-9.0-windows7-x64-v7.zip

cudnn-9.0-windows7-x64-v7.zip

2018-02-23

自动化标注工具AnyLabeling的cpu版本

exe文件直接运行,无需安装

2023-10-07

pytorch模型剪枝

在cifar数据集上做图像分类的训练,并以此演示怎样进行模型剪枝,pytorch版本必须大于1.4.0

2020-07-17

tensorflow_gpu-1.9.0-cp36-cp36m-manylinux1_x86_64.whl

tensorflow_gpu-1.9.0-cp36-cp36m-manylinux1_x86_64.whl 用于pip安装的whl文件

2018-07-27

cudnn-10.2-linux-x64-v8.0.0.180.tgz

cuda10.2对应的cudnn安装包cudnn-10.2-linux-x64-v8.0.0.180.tgz

2020-07-09

torch-1.5.1-cp38-cp38-manylinux1_x86_64.whl

torch-1.5.1-cp38-cp38-manylinux1_x86_64.whl

2020-07-24

nccl-repo-ubuntu1604-2.2.13-ga-cuda9.0_1-1_amd64.deb

ubuntu16.04 cuda9.0 nccl2.1.13 多GPU交互

2018-07-24

neu2017.tgz

cwmt/neu2017中英神经机器翻译平行语料库,在fairseq和opennmt上均成功训练并预测得到不错的结果。

2018-08-06

ISBI Challenge: Segmentation of neuronal structures in EM stacks

ISBI Challenge: Segmentation of neuronal structures in EM stacks 训练数据有30张,分辨率为512x512,这些图片是果蝇的电镜图。

2020-07-22

libtorch-win-shared-with-deps-1.5.0+cpu.zip

libtorch-win-shared-with-deps-1.5.0+cpu.zip

2020-07-21

libtorch-win-shared-with-deps-1.5.1+cpu.zip

libtorch 1.5.1 cpu版本 libtorch-win-shared-with-deps-1.5.1+cpu.zip

2020-07-21

tensorflow_gpu-1.10.0-cp36-cp36m-manylinux1_x86_64.whl

tensorflow_gpu-1.10.0-cp36-cp36m-manylinux1_x86_64.whl python3.6 gpu版本tensorflow1.10

2018-08-15

nccl-repo-ubuntu1604-2.2.12-ga-cuda9.0_1-1_amd64.deb

ubuntu16.04 cuda9.0 nccl2.1.12 多GPU交互

2018-07-24

torch-1.0.0-cp35-cp35m-linux_x86_64.whl

torch-1.0.0-cp35-cp35m-linux_x86_64 cuda8.0 python3.5

2020-06-12

1660Ti+ubuntu18.04+cuda10.0+cudnn+tensorflow-gpu1.13.odt

1660Ti+ubuntu18.04+cuda10.0+cudnn+tensorflow-gpu1.13

2019-06-14

nccl-repo-ubuntu1604-2.2.12-ga-cuda9.2_1-1_amd64.deb

ubuntu16.04 cuda9.2 nccl2.1.12 多GPU交互

2018-07-24

nccl-repo-ubuntu1604-2.1.15-ga-cuda9.0_1-1_amd64.deb

ubuntu16.04 cuda9.0 nccl2.1.15 多GPU交互

2018-07-24

nccl-repo-ubuntu1604-2.2.13-ga-cuda8.0_1-1_amd64.deb

ubuntu16.04 cuda8.0 nccl2.1.13 多GPU交互

2018-07-24

nccl-repo-ubuntu1604-2.2.13-ga-cuda9.2_1-1_amd64.deb

ubuntu16.04 cuda9.2 nccl2.2.13 多GPU交互

2018-07-24

nccl-repo-ubuntu1604-2.2.12-ga-cuda8.0_1-1_amd64.deb

ubuntu16.04 cuda8.0 nccl2.1.12 多GPU交互

2018-07-24

ubuntu cuda cudnn

ubuntu16.04 cuda9.0 cudnn7.1.0.3 tensorflow-gpu

2018-10-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除