什么是过滤模型

摘要

过滤模型是一种在数字化营销业务中常用的数据分析方法,它可以帮助产品经理和运营人员从海量的用户和产品数据中,挑选出最有可能满足用户需求和提高业务效果的用户和产品。过滤模型有两种基本类型,分别是基于内容的过滤模型和基于协同的过滤模型。基于内容的过滤模型是根据用户和产品的属性特征来进行匹配,而基于协同的过滤模型是根据用户和产品的行为数据来进行匹配。过滤模型和召回模型是两种相辅相成的数据分析方法,召回模型是用来从海量数据中筛选出一部分候选的用户和产品,而过滤模型是用来从候选的用户和产品中进一步优化和排序,从而提供更精准和个性化的推荐和服务。本节将详细介绍过滤模型的定义、类型、原理、优缺点、应用场景和实现方法,以及它和召回模型的区别和关系,希望能够帮助读者更好地理解和运用过滤模型,从而提升数字化营销业务的效率和效果。

在数字化营销业务中,我们经常面临这样一个问题:如何从海量的用户和产品数据中,挑选出最有可能满足用户需求和提高业务效果的用户和产品?例如,在电商平台中,如何向用户推荐最适合他们的商品?在广告营销中,如何向用户展示最相关的广告?在用户增长中,如何向用户提供最有价值的服务?这些问题的核心都是如何实现用户和产品之间的最佳匹配,从而提高用户满意度和转化率,降低流失率和成本,增加收入和利润。

为了解决这个问题,我们需要一种数据分析方法,能够根据用户和产品的各种数据,计算出用户和产品之间的匹配程度,从而为用户提供最优的推荐和服务。这种数据分析方法就是过滤模型(Filtering Model)。

过滤模型的定义

过滤模型是一种在数字化营销业务中常用的数据分析方法,它可以帮助我们从海量的用户和产品数据中,挑选出最有可能满足用户需求和提高业务效果的用户和产品。过滤模型的基本思想是,通过分析用户和产品的各种数据,建立用户和产品之间的相似度或者偏好度,从而为用户提供最优的推荐和服务。

那么,什么是用户和产品的数据呢?用户和产品的数据是指我们可以从用户和产品的各种行为和反馈中收集和分析的信息,它可以反映用户和产品的特点和关系。例如,用户的属性数据是指用户的基本信息,如年龄、性别、地域、兴趣等,它可以反映用户的个人特征和偏好。用户的行为数据是指用户对产品的各种操作,如浏览、点击、购买、评价等,它可以反映用户的实际需求和满意度。用户的反馈数据是指用户对产品的各种评价,如评分、评论、收藏等,它可以反映用户的主观感受和意见。同样,产品的属性数据是指产品的基本信息,如类别、价格、品牌、特征等,它可以反映产品的本质和价值。产品的行为数据是指产品的各种表现,如销量、评价、曝光等,它可以反映产品的受欢迎程度和影响力。产品的反馈数据是指产品的各种评价,如评分、评论、收藏等,它可以反映产品的质量和口碑。

什么是用户和产品之间的相似度或者偏好度呢?用户和产品之间的相似度或者偏好度是指我们根据用户和产品的数据,计算出的一个数值,它可以表示用户对产品的兴趣或者满意程度,或者产品对用户的适合程度或者吸引力。例如,如果一个用户和一个产品的属性特征很相似,那么我们可以认为这个用户和这个产品之间的相似度很高,也就是说,这个用户对这个产品的兴趣很高,这个产品对这个用户的适合程度很高。如果一个用户对一个产品的行为和反馈都很积极,那么我们可以认为这个用户和这个产品之间的偏好度很高,也就是说,这个用户对这个产品的满意程度很高,这个产品对这个用户的吸引力很高。

什么是为用户提供最优的推荐和服务呢?为用户提供最优的推荐和服务是指我们根据用户和产品之间的相似度或者偏好度,为用户提供最适合他们的产品,展示最相关的广告,提供最有价值的服务等。例如,如果我们知道一个用户喜欢看科幻小说,那么我们可以为他推荐最新最热的科幻小说,或者展示和科幻小说相关的广告,或者提供和科幻小说相关的服务,如阅读、讨论、创作等。这样,我们就可以提高用户的满意度和转化率,降低用户的流失率和成本,增加我们的收入和利润。

为什么我们需要过滤模型呢?过滤模型的一个很重要的目的是过滤掉不合适的内容,以避免法律风险、合规风险、为公司减少营销损失避免被薅羊毛和减少舆情事件的发生。例如,如果我们不使用过滤模型,而是随机或者无规律地为用户提供推荐和服务,那么我们可能会遇到以下的问题:

  1. 法律风险:我们可能会为用户提供一些违法或者侵权的内容,如色情、暴力、盗版等,这样我们可能会受到法律的制裁和惩罚,甚至会影响我们的业务的合法性和持续性。
  2. 合规风险:我们可能会为用户提供一些违反用户协议或者平台规则的内容,如虚假、误导、欺诈等,这样我们可能会损害用户的权益和信任,甚至会导致用户的投诉和举报,影响我们的业务的合规性和稳定性。
  3. 营销损失:我们可能会为用户提供一些不符合用户需求或者偏好的内容,如过时、低质、无关等,这样我们可能会浪费我们的资源和机会,降低我们的业务的效率和效果,甚至会导致用户的流失和抵触,影响我们的业务的发展和竞争力。
  4. 被薅羊毛:我们可能会为用户提供一些容易被用户利用或者滥用的内容,如优惠、赠品、积分等,这样我们可能会被用户薅羊毛,造成我们的经济损失和品牌损害,甚至会导致用户的不公平和不满,影响我们的业务的公正性和可持续性。
  5. 舆情事件:我们可能会为用户提供一些引起用户不满或者争议的内容,如敏感、偏激、不恰当等,这样我们可能会引发用户的负面评价和口碑,甚至会导致用户的抗议和抵制,影响我们的业务的声誉和形象。

为了避免这些问题,我们需要使用过滤模型,来过滤掉不合适的内容,只为用户提供最合适的内容,从而保证我们的业务的合法性、合规性、效率、效果、公正性、可持续性、声誉和形象。

延伸阅读:什么是过滤模型

过滤模型和召回模型的区别

过滤模型和召回模型是两种在数字化营销业务中常用的数据分析方法,它们都可以帮助我们从海量的用户和产品数据中,挑选出最有可能满足用户需求和提高业务效果的用户和产品。那么,过滤模型和召回模型有什么区别呢?为什么我们需要区分和使用它们呢?我们又该如何选择和结合它们呢?

目的

过滤模型和召回模型的目的是什么?它们的目的有什么不同和联系呢?

过滤模型的目的是为用户提供最优的推荐和服务,也就是说,为用户提供最符合他们需求和偏好的用户和产品,从而提高用户的满意度和转化率,降低用户的流失率和成本,增加我们的收入和利润。过滤模型的核心是用户和产品之间的相似度或者偏好度,也就是用户对产品的兴趣或者满意程度,或者产品对用户的适合程度或者吸引力。过滤模型的一个很重要的目的是过滤掉不合适的内容,以避免法律风险、合规风险、为公司减少营销损失避免被薅羊毛和减少舆情事件的发生。

召回模型的目的是为用户提供最多的候选和选择,也就是说,为用户提供最多的可能满足他们需求和偏好的用户和产品,从而提高用户的选择度和多样性,降低用户的信息负荷和决策难度,增加我们的曝光度和影响力。召回模型的核心是用户和产品之间的相关度或者匹配度,也就是用户的查询或者需求和产品的内容或者功能之间的关联程度或者适配程度。召回模型的一个很重要的目的是召回尽可能多的内容,以避免遗漏潜在的用户和产品,为过滤模型提供更多的输入和输出。

过滤模型和召回模型的目的有不同和联系。它们的不同在于,过滤模型更注重推荐和服务的质量和精度,召回模型更注重推荐和服务的数量和速度。它们的联系在于,过滤模型和召回模型是相辅相成的,过滤模型需要召回模型提供候选的用户和产品,召回模型需要过滤模型提供优化和排序的用户和产品。过滤模型和召回模型的目的都是为了提升数字化营销业务的效率和效果。

输入

过滤模型和召回模型的输入是什么?它们的输入有什么不同和联系呢?

过滤模型的输入是用户和产品的各种数据,包括用户的属性数据(如年龄、性别、地域、兴趣等)、行为数据(如浏览、点击、购买、评价等)、反馈数据(如评分、评论、收藏等)等,以及产品的属性数据(如类别、价格、品牌、特征等)、行为数据(如销量、评价、曝光等)、反馈数据(如评分、评论、收藏等)等。这些数据可以反映用户和产品的特点和关系,以及用户对产品的需求和偏好,或者产品对用户的价值和吸引力。过滤模型的输入通常是召回模型的输出,也就是召回模型筛选出的一部分候选的用户和产品。

召回模型的输入是用户的查询或者需求,也就是用户通过搜索框、导航栏、分类目录等方式输入的关键词、标签、条件等,或者用户通过点击、收藏、分享等方式表达的意图、喜好、兴趣等。这些查询或者需求可以反映用户的当前的目的和期望,以及用户想要获取的用户和产品的类型和范围。召回模型的输入通常是用户的主动或者被动的行为,也就是用户在数字化营销平台上的各种操作和反应。

过滤模型和召回模型的输入有不同和联系。它们的不同在于,过滤模型的输入是用户和产品的各种数据,召回模型的输入是用户的查询或者需求。它们的联系在于,过滤模型的输入通常是召回模型的输出,召回模型的输入通常是用户的行为。过滤模型和召回模型的输入都是为了描述用户和产品之间的关系,以及用户对产品的兴趣或者满意程度,或者产品对用户的适合程度或者吸引力。

输出

过滤模型和召回模型的输出是什么?它们的输出有什么不同和联系呢?

过滤模型的输出是用户和产品之间的相似度或者偏好度,也就是用户对产品的兴趣或者满意程度,或者产品对用户的适合程度或者吸引力。这些相似度或者偏好度是一个数值,它可以表示用户和产品之间的匹配程度,也可以用来对用户和产品进行优化和排序,从而为用户提供最优的推荐和服务。过滤模型的输出通常是为用户提供的最终的用户和产品,也就是用户看到的推荐列表,广告展示,服务提供等。

召回模型的输出是用户和产品之间的相关度或者匹配度,也就是用户的查询或者需求和产品的内容或者功能之间的关联程度或者适配程度。这些相关度或者匹配度是一个数值,它可以表示用户的查询或者需求和产品的内容或者功能之间的符合程度,也可以用来对用户和产品进行筛选和过滤,从而为用户提供最多的候选和选择。召回模型的输出通常是为过滤模型提供的一部分候选的用户和产品,也就是过滤模型的输入,也是用户可以从中选择的用户和产品的范围和类型。

过滤模型和召回模型的输出有不同和联系。它们的不同在于,过滤模型的输出是用户和产品之间的相似度或者偏好度,召回模型的输出是用户和产品之间的相关度或者匹配度。它们的联系在于,过滤模型的输出通常是召回模型的输出的一部分,召回模型的输出通常是过滤模型的输入。过滤模型和召回模型的输出都是为了向用户提供最优的推荐和服务,以及最多的候选和选择。

方法

过滤模型和召回模型的方法是什么?它们的方法有什么不同和联系呢?

过滤模型的方法是根据用户和产品的数据,计算用户和产品之间的相似度或者偏好度,从而为用户提供最优的推荐和服务。过滤模型的方法有两种基本类型,分别是基于内容的过滤模型和基于协同的过滤模型。基于内容的过滤模型是根据用户和产品的属性特征来进行匹配,例如,我们可以提取用户的兴趣标签,如喜剧、恐怖、动作等,以及产品的类别标签,如电影、电视剧、综艺等,然后计算用户和产品之间的标签相似度,从而为用户推荐和他们兴趣标签相似的产品。基于协同的过滤模型是根据用户和产品的行为数据来进行匹配,例如,我们可以分析用户的观看历史,如观看时长、观看进度、观看频率等,以及产品的观看数据,如播放量、点赞量、评论量等,然后计算用户和用户之间的观看相似度,或者产品和产品之间的观看相似度,从而为用户推荐和他们观看行为相似的其他用户喜欢的产品,或者和他们喜欢的产品观看行为相似的产品。

召回模型的方法是根据用户的查询或者需求,检索用户和产品之间的相关度或者匹配度,从而为用户提供最多的候选和选择。召回模型的方法有多种类型,例如,基于关键词的召回模型,基于标签的召回模型,基于条件的召回模型,基于意图的召回模型等。基于关键词的召回模型是根据用户输入的关键词,检索和关键词相关的产品,例如,我们可以使用倒排索引,将每个产品对应的关键词存储在一个表中,然后根据用户输入的关键词,从表中查找和关键词匹配的产品,从而为用户召回和关键词相关的产品。基于标签的召回模型是根据用户选择的标签,检索和标签相关的产品,例如,我们可以使用多标签分类,将每个产品对应的标签存储在一个表中,然后根据用户选择的标签,从表中查找和标签匹配的产品,从而为用户召回和标签相关的产品。基于条件的召回模型是根据用户设置的条件,检索和条件符合的产品,例如,我们可以使用过滤器,将每个产品对应的条件存储在一个表中,然后根据用户设置的条件,从表中查找和条件符合的产品,从而为用户召回和条件符合的产品。基于意图的召回模型是根据用户表达的意图,检索和意图相关的产品,例如,我们可以使用自然语言处理,将用户的语言转换为意图,然后根据用户的意图,从数据库中查找和意图相关的产品,从而为用户召回和意图相关的产品。

过滤模型和召回模型的方法有不同和联系。它们的不同在于,过滤模型的方法是根据用户和产品的数据,计算用户和产品之间的相似度或者偏好度,召回模型的方法是根据用户的查询或者需求,检索用户和产品之间的相关度或者匹配度。它们的联系在于,过滤模型的方法通常是在召回模型的方法的基础上进行的,也就是说,过滤模型的方法需要召回模型的方法提供候选的用户和产品,召回模型的方法可以为过滤模型的方法提供更多的输入和输出。过滤模型和召回模型的方法都是为了实现用户和产品之间的匹配,以及用户对产品的兴趣或者满意程度,或者产品对用户的适合程度或者吸引力。

评价

过滤模型和召回模型的评价指标是什么?它们的评价指标有什么不同和联系呢?

过滤模型的评价指标是准确度和个性化,也就是说,过滤模型的评价指标是衡量过滤模型为用户提供的推荐和服务是否符合用户的需求和偏好,以及是否能够反映用户的个性和特点。过滤模型的评价指标有多种类型,例如,准确率、召回率、精确率、F1值、均方根误差、平均绝对误差、覆盖率、多样性、新颖性等。这些评价指标可以从不同的角度和层面来评估过滤模型的性能和效果,也可以用来对过滤模型进行优化和改进。过滤模型的评价指标通常是通过实验或者反馈来获取的,也就是说,通过对比过滤模型的输出和用户的实际行为或者反馈,来计算过滤模型的评价指标。

召回模型的评价指标是召回率和多样性,也就是说,召回模型的评价指标是衡量召回模型为用户提供的候选和选择是否充分和丰富,以及是否能够覆盖用户的不同的需求和偏好。召回模型的评价指标有多种类型,例如,召回率、命中率、准确率、F1值、覆盖率、多样性、新颖性等。这些评价指标可以从不同的角度和层面来评估召回模型的性能和效果,也可以用来对召回模型进行优化和改进。召回模型的评价指标通常是通过实验或者反馈来获取的,也就是说,通过对比召回模型的输出和用户的实际行为或者反馈,来计算召回模型的评价指标。

过滤模型和召回模型的评价指标有不同和联系。它们的不同在于,过滤模型的评价指标更注重推荐和服务的质量和精度,召回模型的评价指标更注重推荐和服务的数量和速度。它们的联系在于,过滤模型和召回模型的评价指标都是为了衡量用户和产品之间的匹配程度,以及用户对产品的兴趣或者满意程度,或者产品对用户的适合程度或者吸引力。过滤模型和召回模型的评价指标也可以相互影响和平衡,例如,提高召回率可能会降低准确度,提高多样性可能会降低个性化,提高新颖性可能会降低满意度等。

举个例子,假设我们要在电商平台中向用户推荐商品,我们可以先用召回模型根据用户的查询或者需求,从海量的商品中筛选出一部分候选的商品,然后再用过滤模型根据用户和商品的各种数据,从候选的商品中进一步优化和排序,从而向用户推荐最适合他们的商品。这样,我们既能保证用户有足够的候选和选择,又能保证用户得到最优的推荐和服务。

过滤模型和召回模型的关系

过滤模型和召回模型是两种相辅相成的数据分析方法,它们都可以帮助产品经理和运营人员从海量的用户和产品数据中,挑选出最有可能满足用户需求和提高业务效果的用户和产品。那么,过滤模型和召回模型有什么关系呢?

过滤模型和召回模型的关系主要体现在以下几个方面:

  1. 顺序:过滤模型和召回模型通常是按照一定的顺序结合使用的,先用召回模型从海量的用户和产品数据中筛选出一部分候选的用户和产品,然后再用过滤模型从候选的用户和产品中进一步优化和排序,从而为用户提供最优的推荐和服务。这样,可以在保证推荐的效率和速度的同时,也保证推荐的质量和精度。
  2. 补充:过滤模型和召回模型也可以互相补充和弥补对方的不足,例如,当召回模型的召回率不够高时,可以用过滤模型来增加召回的数量和范围,当过滤模型的准确度不够高时,可以用召回模型来提高过滤的精确度和相关度。
  3. 融合:过滤模型和召回模型也可以进行深度的融合和优化,例如,可以在召回模型中引入过滤模型的相似度或者偏好度,或者在过滤模型中引入召回模型的相关度或者匹配度,从而实现更高效和更精准的推荐和服务。
  4. 类型:过滤模型有两种基本类型,分别是基于内容的过滤模型和基于协同的过滤模型。基于内容的过滤模型是根据用户和产品的属性特征来进行匹配,而基于协同的过滤模型是根据用户和产品的行为数据来进行匹配。
  5. 原理:基于内容的过滤模型的原理是,通过提取用户和产品的属性特征,计算用户和产品之间的特征相似度,从而为用户推荐和他们特征相似的产品。基于协同的过滤模型的原理是,通过分析用户和产品的行为数据,计算用户和用户之间的行为相似度,或者产品和产品之间的行为相似度,从而为用户推荐和他们行为相似的用户喜欢的产品,或者和他们喜欢的产品行为相似的产品。
  6. 优缺点:基于内容的过滤模型的优点是,可以利用用户和产品的丰富的属性特征,提供更精准和个性化的推荐,而且不受用户和产品数量的限制,也不需要用户的反馈数据。基于内容的过滤模型的缺点是,需要对用户和产品的属性特征进行有效的提取和表示,而且可能忽略用户的多样化和动态化的需求,也可能导致推荐过于狭隘和单一。基于协同的过滤模型的优点是,可以利用用户和产品的实际的行为数据,提供更符合用户的实际需求和偏好的推荐,而且可以发现用户的潜在的兴趣和需求,也可以提高推荐的多样性和新颖性。基于协同的过滤模型的缺点是,需要有足够的用户和产品的行为数据,而且受用户和产品数量的影响,也需要解决冷启动和稀疏性的问题。
  7. 应用场景:基于内容的过滤模型和基于协同的过滤模型都可以应用在各种数字化营销业务中,例如电商、广告营销和用户增长等。不同的业务场景可以根据自己的特点和需求,选择合适的过滤模型,或者结合使用两种过滤模型,以达到最佳的推荐和服务效果。例如,在电商平台中,可以使用基于内容的过滤模型来推荐和用户购买历史相似的商品,也可以使用基于协同的过滤模型来推荐和用户购买行为相似的其他用户喜欢的商品,或者和用户喜欢的商品购买行为相似的商品。在广告营销中,可以使用基于内容的过滤模型来展示和用户浏览内容相似的广告,也可以使用基于协同的过滤模型来展示和用户浏览行为相似的其他用户点击的广告,或者和用户点击的广告浏览行为相似的广告。在用户增长中,可以使用基于内容的过滤模型来提供和用户注册信息相似的服务,也可以使用基于协同的过滤模型来提供和用户使用行为相似的其他用户喜欢的服务,或者和用户喜欢的服务使用行为相似的服务。
  8. 实现方法:基于内容的过滤模型和基于协同的过滤模型都可以使用各种数据挖掘和机器学习的方法来实现,例如特征提取、相似度计算、矩阵分解、聚类、分类、回归、神经网络等。不同的方法有各自的优势和局限,需要根据具体的业务场景和数据情况,选择合适的方法,或者结合使用多种方法,以达到最佳的过滤效果。例如,在基于内容的过滤模型中,可以使用文本分析、图像分析、语音分析等方法来提取用户和产品的属性特征,然后使用余弦相似度、欧氏距离、皮尔逊相关系数等方法来计算用户和产品之间的特征相似度。在基于协同的过滤模型中,可以使用用户-产品评分矩阵、用户-用户相似度矩阵、产品-产品相似度矩阵等方法来表示用户和产品的行为数据,然后使用奇异值分解、隐语义分析、隐因子模型等方法来降维和分解用户和产品的行为数据,从而计算用户和用户之间的行为相似度,或者产品和产品之间的行为相似度。

如果你想了解更多关于人工智能大模型在数字化营销业务中的应用和实践经验,欢迎关注我的个人号“产品经理独孤虾”(全网同号),我在我的专栏《智能营销—大模型如何为运营与产品经理赋能》中,会定期分享更多的内容和案例,希望能够对你有所帮助和启发。

《智能营销——大模型如何为运营与产品经理赋能》(方兵)【摘要 书评 试读】- 京东图书

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

产品经理独孤虾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值