
LLM & AIGC
文章平均质量分 87
大模型、多模态、AIGC 工具分享
EAI工程笔记
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数据集 - PhyX 物理推理基准测试 - 您的模型具备物理推理能力吗?
一、关于 PhyX 数据集基础信息数据集背景二、数据特性1、核心特征2、数据集版本3、数据字段说明三、使用方式Ss加载代码四、更新日志原创 2025-07-16 16:23:00 · 905 阅读 · 0 评论 -
NVIDIA CUDA Linux 官方安装指南
1.导言1.1.系统要求1.2.操作系统支持政策1.3.主机编译器支持政策1.3.1.支持的C++方言1.4.关于本文件2.安装前的操作2.1.验证您有一个支持CUDA的GPU2.2.验证您拥有受支持的Linux版本2.3.验证系统是否已安装gcc2.4.选择一种安装方法2.5.下载NVIDIA CUDA工具包下载验证2.6.处理相互冲突的安装方法3.包管理器安装3.1.概述3.2. RHEL / Rocky3.2.1 准备 RHEL / Rocky3.2.2RHEL/R原创 2025-01-14 21:39:54 · 2004 阅读 · 0 评论 -
Agent 文章、技术汇总 - 了解 Agent 从这里开始
paper文章技术分享商业运营🔮 Awesome AI Agents开源AgentGithub TopicsAdalaAgent4RecAgentForgeAgentGPTAgentPilotAgentsAgentVerseAI LegionAiderAIliceAutoGenAutoGPTAutomataAutoPRAutonomous HR ChatbotBabyAGIBabyBeeAGIBabyCatAGIBabyDeerAGIBabyElfAG原创 2025-01-13 13:46:56 · 1708 阅读 · 0 评论 -
CAT4D - 创建4D内容,使用 多视图扩散模型(Multi-View Video Diffusion Models)
仅给定动态场景的一些姿势图像,我们就可以通过重建与一个输入视图的时间相对应的静态 3D 场景来创建“子弹时间”效果。CAT4D的核心是一个多视图视频扩散模型,它解开了摄像机和场景运动的控制。给定输入单目视频,我们使用我们的多视图视频扩散模型在新视点生成多视图视频。然后,这些生成的视频用于将动态3D场景重建为变形的3D高斯。使用多视图扩散模型(Multi-View Video Diffusion Models),在4D中创建任何内容。将我们的方法与不同任务的基线进行比较。3)变化视点和变化时间。原创 2025-01-08 20:15:00 · 506 阅读 · 0 评论 -
大模型 2024 总结系列 文章/资源分享
这里记录一些比较好的总结文章和资源。原创 2025-01-01 19:24:35 · 788 阅读 · 0 评论 -
Mac 上安装使用 Jax
1、Metal 插件2、要求3、开始行动3.1 安装3.2 验证3.3 与jaxlib的兼容性4、在AXLearning Fuji模型上运行推理4.1 安装Miniconda4.2 Setup venv4.3 运行演示5、测试6、目前不支持7、问题和反馈翻译 2024-11-08 19:19:43 · 286 阅读 · 0 评论 -
大模型 LLM 相关 API Key 配置速查
LangChain智谱DashScope - QwenMoonshot AI - Kimitavily原创 2024-10-16 16:40:01 · 1092 阅读 · 0 评论 -
Agent Zero
一、关于 Agent Zero现在有了UI:关键概念1、General-purpose 助理2、计算机作为工具3、多智能体合作4、完全可定制和可扩展5、沟通是关键不错的功能记住已知问题理想的环境二、Setup - 如何在Windows和MacOS上安装Agent Zero提醒:1、安装Conda(minicon da)2、安装Docker(Docker桌面应用程序)3、下载Agent Zero4、设置Conda环境5、配置Agent Zero6、运行Agent Zero原创 2024-09-20 05:15:00 · 2717 阅读 · 0 评论 -
HuggingFace - 使用 Inference API
HuggingFace - 使用 Inference API原创 2024-09-12 09:21:30 · 740 阅读 · 0 评论 -
[译] RAGFlow 使用说明
快速启动一、先决条件二、启动服务器1、确保 `vm.max_map_count` ≥ 262144:2、克隆存储库:3、构建预构建的Docker映像并启动服务器:三、配置LLM四、创建您的第一个知识库五、文件解析六、设置一个AI聊天配置知识库一、创建知识库二、配置知识库1、选择块方法2、选择嵌入模型3、上传文件4、解析文件5、干预文件解析结果6、运行检索测试三、搜索知识库四、删除知识库开始AI聊天一、开始一个AI聊天二、更新现有对话的设置三、将聊天功能集成到您翻译 2024-08-28 21:55:50 · 38421 阅读 · 8 评论 -
macOS 设置 vm.max_map_count [RAGFlow]
macOS 上使用 ragflow 时,设置 vm.max_map_count 以保证 ES 正常运行原创 2024-08-28 16:44:35 · 2971 阅读 · 0 评论 -
Auto-Editor
一、关于 Auto-Editor安装系统兼容性版权二、切割自动切割的方法看看自动编辑器删掉了什么三、导出到编辑器命名时间线按 Clip 分割四、手工编辑五、更多的选择原创 2024-08-24 23:35:41 · 925 阅读 · 0 评论 -
Unsloth 使用说明
一、基本说明什么是微调,为什么?如何使用Unsloth?📒Unsloth NotebooksGoogle ColabMain notebooks:Other notebooks:Kaggle支持的所有模型 📚二、安装📥1、更新无需依赖项 更新2、Conda 安装3、Pip安装4、Google Colab三、保存模型📂保存到GGUF保存到Ollama在Google Colab上保存出口到Ollama自动创建`Modelfile`Ollama推断保存到VLLM原创 2024-08-24 22:46:59 · 4285 阅读 · 1 评论 -
Unsloth 教程 - 如何微调 Llama-3并导出到 Ollama
1、什么是Unsloth?2、什么是Ollama?3、安装Unsloth4、选择要微调的模型5、微调参数6、Alpaca 数据集7、多列微调8、多轮对话9、可定制的聊天模板10、训练模型11、推理/运行模型12、保存模型13、导出到 Ollama14、自动创建`Modelfile`15、Ollama 推理16、交互式ChatGPT风格你做到了!原创 2024-08-24 22:40:52 · 3042 阅读 · 0 评论 -
marker - PDF 转 markdown
一、关于 marker特点它是如何工作的例子性能商业用途托管API限制二、安装Optional: OCRMyPDF三、用法配置转换单个文件转换多个文件在多个GPU上转换多个文件三、故障排除四、有用的设置五、基准测试速度精度吞吐量六、运行自己的基准测试七、感谢翻译 2024-08-02 11:25:57 · 1276 阅读 · 0 评论 -
LlamaIndex - workflow
一、关于 workflow二、基于图的用户体验的局限性三、从图表到EDA:去事件驱动四、工作流入门1、基本使用2、工作流可以循环3、工作流保持状态4、工作流程可以定制5、可以调试工作流五、为什么今天应该使用工作流六、资源翻译 2024-08-06 18:47:17 · 1293 阅读 · 0 评论 -
LangGraph Studio
一、关于 LangGraph Studio下载二、设置三、打开一个项目三、调用图开始新的运行配置图运行四、创建和编辑线程1、创建一个线程2、选择一个线程3、编辑线程状态五、如何向图表添加中断1、将中断添加到节点列表2、向特定节点添加中断六、Human-in-the-loop七、编辑项目配置八、编辑图形代码原创 2024-08-06 18:38:56 · 2762 阅读 · 0 评论 -
AnythingLLM
是一个全栈应用程序,可以将任何文档、资源(如网址链接、音频、视频)或内容片段转换为上下文,以便任何大语言模型(LLM)在聊天期间作为参考使用。AnythingLLM是一个全栈应用程序,您可以使用现成的商业大语言模型或流行的开源大语言模型,再结合向量数据库解决方案构建一个私有ChatGPT,不再受制于人:您可以本地运行,也可以远程托管,并能够与您提供的任何文档智能聊天。工作区可以共享文档,但工作区之间的内容不会互相干扰或污染,因此您可以保持每个工作区的上下文清晰。AnythingLLM将您的文档划分为称为。翻译 2024-08-04 15:11:00 · 10266 阅读 · 0 评论 -
Nerd Fonts - 为终端和编辑器添加强大图标支持
关于 Nerd Fonts重要告示TL;DR字体的各种下载选项特点Glyph Setsshell中的图标名称修补字体Variations字体安装`Option 1: Release Archive Download``Option 2: Homebrew Fonts``Option 3: Unofficial Chocolatey or Scoop Repositories``Option 4: Arch Extra Repository``Option 5: Ad Hoc Cu翻译 2024-08-04 13:07:17 · 2503 阅读 · 0 评论 -
gpt-engineer
一、关于 gpt-engineerRoadmap二、安装安装 gpt-engineer故障排除设置API密钥三、使用创建新代码(默认用法)改进现有代码基准定制代理四、gptengineer.app 相关( gpt-engineer )五、特点预提示愿景开源、本地和替代模型原创 2024-08-04 12:19:43 · 1210 阅读 · 0 评论 -
PyMuPDF-Guide
一、打开文件1、支持的文件类型2、如何打开文件打开一个错误的文件扩展名3、打开远程文件从云服务打开文件4、以文本形式打开文件例子打开一个`C#`文件打开一个`XML`文件打开一个`JSON`文件二、文本1、如何提取所有文档文本2、如何提取文本作为Markdown3、如何从页面中提取键值对4、如何从矩形中提取文本5、如何以自然阅读顺序提取文本6、如何从文档中提取表格内容7、如何标记提取的文本8、如何标记搜索文本9、如何标记非水平文本10、如何分析字体特征12、如何原创 2024-08-03 16:09:36 · 1577 阅读 · 0 评论 -
Felo 实时语音翻译 小记
关于 Felo产品支持语言原创 2024-07-26 23:38:54 · 1046 阅读 · 0 评论 -
Alibaba Pai
关于 Alibaba PaiPAI底层支持多种计算框架:PAI提供的服务:优势产品架构功能特性人工智能平台 PAI基本概念管理员视角AI开发视角PAI产品模块转载 2024-07-26 23:13:41 · 189 阅读 · 0 评论 -
TransformerEngine
一、关于 TransformerEngine ?亮点二、使用示例PyTorchJAXFlax三、安装先决条件Dockerpip从源码使用 FlashAttention-2 编译四、突破性的变化v1.7: Padding mask definition for PyTorch五、FP8 收敛六、集成七、其它贡献论文视频最新消息原创 2024-07-26 22:52:24 · 2165 阅读 · 0 评论 -
Stirling-PDF
Stirling-PDF 是一个强大的、本地托管的基于Web的PDF操作工具,使用Docker。它使您能够对PDF文件执行各种操作,包括拆分、合并、转换、重组、添加图像、旋转、压缩等。这个本地托管的Web应用程序已经发展到包含一组全面的功能,寻址您的所有PDF需求。Stirling PDF 不会出于记录保存或跟踪目的 发起任何站外呼叫。所有文件和PDF要么只存在于客户端,要么仅在任务执行期间 驻留在服务器记忆中,要么仅在任务执行时 临时驻留在文件中。到那时,用户下载的任何文件都将从服务器中删除。原创 2024-07-26 10:42:54 · 4930 阅读 · 0 评论 -
fabric
一、关于 fabricNetwork Chuck 的介绍视频什么以及为什么换句话说,人工智能没有能力问题 —— 它有接入问题。哲学将问题分解为组件prompts 太多我们对提示的方法二、快速入门Python 版本设置结构命令三、更新使用 `fabric` 客户端示例命令只需使用模式创建您自己的 Fabric Mill四、结构1、组件2、CLI 原生3、直接调用模式五、示例六、自定义模式七、Agents八、助手应用1、YouTube2、TS(音频转录)安装原创 2024-07-25 10:55:11 · 1337 阅读 · 0 评论 -
Quivr
一、关于 Quivr主要特点🎯二、入门🚀先决条件📋60秒安装💽更新Quivr🚀原创 2024-07-25 10:17:04 · 523 阅读 · 0 评论 -
LiteLLM
一、关于 LiteLLM🚅企业级我们为什么要建造这个?二、用法异步流日志可观测性三、OpenAI代理📖代理端点快速启动代理-CLI第1步:启动litellm代理第2步:向代理发出ChatCompletions请求代理密钥管理请求预期反应四、支持的 Providers五、贡献原创 2024-07-25 09:45:21 · 2541 阅读 · 0 评论 -
llama-agentic-system
一、关于 llama-agentic-system二、LLama代理系统安装和设置指南1、创建Conda环境2、运行FP83、作为包安装4、测试安装5、下载检查点(或使用现有模型)6、配置推理服务器配置7、运行推理服务器8、配置代理系统9、为工具添加API密钥10、启动应用程序并与服务器交互11、启动一个可以创建代理并与推理服务器交互的脚本原创 2024-07-24 09:59:49 · 1960 阅读 · 0 评论 -
使用 SpeechT5 进行语音合成、识别和更多功能
一、SpeechT5 介绍二、文字转语音三、语音转语音的语音转换四、用于自动语音识别的语音转文本五、结论原创 2024-07-21 21:10:39 · 959 阅读 · 0 评论 -
WhisperX
一、关于 WhisperX新闻 🚨二、设置⚙️1、创建Python3.10环境2、安装PyTorch,例如Linux和Windows CUDA11.8:3、安装此repo4、Speaker Diarization三、使用💬(命令行)1、English2、他语言例如德语四、Python使用🐍五、Demos 🚀六、技术细节👷♂️七、限制⚠️原创 2024-07-21 21:04:18 · 2321 阅读 · 0 评论 -
Open-Sora
一、关于 Open-Sora📰 资讯最新的 Demo 🎥二、安装1、从源头安装2、使用Docker三、模型权重Open-Sora 1.2 模型权重四、Gradio演示1、本地部署2、入门五、推理1、Open-Sora 1.2 命令行推理2、序列并行推理3、GPT-4o 快速细化六、数据处理七、训练Open-Sora 1.2 训练八、评估九、VAE 训练与评估原创 2024-07-20 23:08:17 · 2326 阅读 · 0 评论 -
SentenceTransformers (SBERT)
一、关于 SBERT特点预训练模型应用实例二、安装开发设置三、入门使用四、训练五、Cross Encoder原创 2024-07-19 23:15:21 · 1511 阅读 · 0 评论 -
FastChat
一、关于 FastChat二、安装方法1:使用pip方法2:从源码三、模型权重1、Vicuna 权重2、其他模型四、使用命令行界面进行推理1、支持的模型2、单GPU3、多 GPU4、仅 CPU5、Metal 后端(带有Apple Silicon 或 AMD GPU 的 Mac计算机)6、英特尔 XPU(英特尔数据中心和Arc A系列GPU)7、Ascend NPU8、内存不够9、更多平台和量化10、使用 modelscope 中的模型五、使用Web GUI提供服务1、启原创 2024-07-17 11:20:01 · 1296 阅读 · 0 评论 -
LLaMA-Factory
一、关于 LLaMA-Factory项目特色性能指标二、如何使用1、安装 LLaMA Factory2、数据准备3、快速开始4、LLaMA Board 可视化微调5、构建 DockerCUDA 用户:昇腾 NPU 用户:不使用 Docker Compose 构建CUDA 用户:昇腾 NPU 用户:数据卷详情6、利用 vLLM 部署 OpenAI API7、从魔搭社区下载8、使用 W&B 面板三、支持1、模型2、训练方法3、数据集预训练数据集指令微调数据集偏好原创 2024-07-17 10:39:31 · 2765 阅读 · 0 评论 -
MPS 后端
它引入了新的设备,将机器学习计算图和原语映射到 Metal Performance Shaders 图框架和 Metal Performance Shaders 框架提供的经过优化的内核上。新的 MPS 后端扩展了 PyTorch 生态系统,并为现有脚本提供在 GPU 上设置和运行操作的功能。设备支持 在使用 Metal 编程框架的 MacOS 设备上,进行高性能 GPU 训练。要开始使用,只需将您的张量和模块移动到。2024-07-16(二)原创 2024-07-16 21:27:56 · 454 阅读 · 0 评论 -
Accelerated PyTorch training on Mac
Metal 加速要求开始1.Set upAnacondapip2.安装Anacondapip从源代码构建3.验证反馈意见资源原创 2024-07-16 21:25:36 · 1145 阅读 · 0 评论 -
LLaVA
一、关于 LLaVA摘要二、Multimodal Instrucion-Following Data三、LLaVA:大型语言和视觉助手四、性能1、 视觉聊天:构建多模态GPT-4级聊天机器人2、科学QA:LLaVA与GPT-4协同作用的新SoTA五、以下视觉教学示例1、基于[OpenAI GPT-4技术报告中两个例子的可视化推理](https://arxiv.org/abs/2303.08774)2、光学字符识别(OCR)3、对话示例六、安装升级到最新的代码库使用HuggingFa原创 2024-07-16 19:59:51 · 1649 阅读 · 0 评论 -
llama-cpp-python
一、关于 llama-cpp-python二、安装安装配置支持的后端Windows 笔记MacOS笔记升级和重新安装三、高级API1、简单示例2、从 Hugging Face Hub 中提取模型3、聊天完成4、JSON和JSON模式JSON模式JSON Schema 模式5、函数调用6、多模态模型7、Speculative Decoding8、Embeddings9、调整上下文窗口四、OpenAI兼容Web服务器Web服务器功能五、Docker镜像六、低级API翻译 2024-07-16 17:06:24 · 4012 阅读 · 0 评论 -
Axolotl
一、关于 Axolotl特点Axolotl支持二、快速入门⚡用法三、环境设置1、Docker2、Conda/Pip venv3、Cloud GPU4、Bare Metal Cloud GPULambdaLabsGCP5、Windows6、Mac7、Google Colab8、通过SkyPilot在公共云上启动9、通过 dstack 在公共云上启动四、其他高级设置1、数据集2、配置所有配置选项五、训练运行预处理数据集多GPU1、DeepSpeed2、FSDP原创 2024-07-16 15:40:17 · 2174 阅读 · 0 评论