7-3 哈夫曼编码 (30分)

本文介绍了一种算法,用于判断给定的编码方案是否为有效的哈夫曼编码。通过计算带权路径长度和检查编码前缀的独特性,该算法能够确定编码是否满足哈夫曼编码的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一段文字,如果我们统计出字母出现的频率,是可以根据哈夫曼算法给出一套编码,使得用此编码压缩原文可以得到最短的编码总长。然而哈夫曼编码并不是唯一的。例如对字符串"aaaxuaxz",容易得到字母 ‘a’、‘x’、‘u’、‘z’ 的出现频率对应为 4、2、1、1。我们可以设计编码 {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111},也可以用另一套 {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000},还可以用 {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101},三套编码都可以把原文压缩到 14 个字节。但是 {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} 就不是哈夫曼编码,因为用这套编码压缩得到 00001011001001 后,解码的结果不唯一,“aaaxuaxz” 和 “aazuaxax” 都可以对应解码的结果。本题就请你判断任一套编码是否哈夫曼编码。

输入格式:
首先第一行给出一个正整数 N(2≤N≤63),随后第二行给出 N 个不重复的字符及其出现频率,格式如下:

c[1] f[1] c[2] f[2] … c[N] f[N]
其中c[i]是集合{‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}中的字符;f[i]是c[i]的出现频率,为不超过 1000 的整数。再下一行给出一个正整数 M(≤1000),随后是 M 套待检的编码。每套编码占 N 行,格式为:

c[i] code[i]
其中c[i]是第i个字符;code[i]是不超过63个’0’和’1’的非空字符串。

输出格式:
对每套待检编码,如果是正确的哈夫曼编码,就在一行中输出"Yes",否则输出"No"。

注意:最优编码并不一定通过哈夫曼算法得到。任何能压缩到最优长度的前缀编码都应被判为正确。

输入样例:
7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
输出样例:
Yes
Yes
No
No

思路

计算带权路径长度:判断样例所给权值,如果大于则直接不符合要求;
判断所给编码前缀是否重复

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
typedef struct{
	int p;
	int l,r,w;
}HTNode,*HuffmanTree;

struct Code{
	char str[64];
}code[1000];

struct node{
	int s1,s2;
};
node Select(HuffmanTree HT,int n,node s)
{
	
	int flag = 0;
	for(int i=1;i<=n;i++){
		if(HT[i].p==0&&flag==0){
			s.s1 = i;
			flag = 1;
		}
		if(HT[i].p==0&&HT[s.s1].w>HT[i].w){
			s.s1 = i;
		}
		
	}	
	flag = 0;
	for(int i=1;i<=n;i++){
		if(flag==0&&HT[i].p==0&&s.s1!=i){
			flag = 1;
			s.s2 = i;
			
		}
		if(HT[i].p==0&&s.s1!=i&&HT[s.s2].w>HT[i].w){
			s.s2 = i;	
		}
	}	
	return s;
}
HuffmanTree HT;
void HuffmanCoding(int w[],int n)
{
	
	if(n<=1) return;
	int m = 2*n-1;
	HT = (HuffmanTree)malloc((m+1)*sizeof(HTNode));
	HTNode *p = HT;	
	int i = 1;//初始化 
	for(p=HT+1;i<=n;i++,p++)
	{
		p->p = 0;
		p->w = w[i-1];
		p->l = 0;
		p->r = 0; 
	}
	
	for(;i<=m;i++,p++)
	{
		p->p = 0;
		p->w = 0;
		p->l = 0;
		p->r = 0;
	}
	//create HuffmanTree
	for(i=n+1;i<=m;i++){
		node select;
		node ans = Select(HT,i-1,select);
//		printf("%d %d\n",ans.s1,ans.s2);
		HT[i].l = ans.s1;
		HT[i].r = ans.s2;
		HT[ans.s1].p = i;
		HT[ans.s2].p = i;
		HT[i].w = HT[ans.s1].w+HT[ans.s2].w;
	}
}
int main()
{
	int n;
	scanf("%d",&n);
	getchar();
	int w[64];
	for(int i=0;i<n;i++){
		char c;
		scanf("%c %d",&c,&w[i]);
		getchar();
	}
	
	HuffmanCoding(w,n);
	
	//计算带权路径长度
	int weight = 0;
	
	for(int i=1;i<2*n;i++){
		if(HT[i].l!=0&&HT[i].r!=0){
			weight += HT[i].w;
		}	
	} 
	int m;
	scanf("%d",&m);
	
	while(m--)
	{
		for(int i=1;i<=n;i++){
			char c;
			getchar();
			scanf("%c %s",&c,code[i].str);
			//getchar();
		}
		int thisWeight = 0;
		//计算样例带权路径长度
		for(int i=1;i<=n;i++){
			thisWeight += w[i-1]*strlen(code[i].str);
		}
		if(thisWeight>weight){
			printf("No\n");
			continue;
		}
		int flag = 0;
		for(int j=n;j>=1;j--){
			for(int k=j-1;k>=1;k--){
				int len1 = strlen(code[j].str);
				int len2 = strlen(code[k].str);
				//printf("%d %d\n",len1,len2);
				if(len1>=len2){
					if(strncmp(code[k].str,code[j].str,len2)==0){
						
						flag = 1;
						break;
					}
				}else{
					if(strncmp(code[j].str,code[k].str,len1)==0){
						
						flag = 1;
						break;
					}
				}
			}
			if(flag==1) break;
		}
		if(flag==1) printf("No\n");
		else printf("Yes\n");
	}
	return 0;
 } 

小收获

  1. 纯c语言在进行结构体定义的时候一定用struct XXX
  2. 调用函数的时候传入局部变量不能用使用引用,就定义成全局变量(可能是我学识浅陋,还没发现)
  3. strncmp()函数。判断一个字符穿的前n个字符是否于另一个字符串相同,相同则返回0。
### 哈夫曼编码的概念 哈夫曼编码是一种基于字符出现概率的可变字长编码技术,其核心目标是最小化加权路径长度,从而实现数据压缩的效果。这种编码方式由David Huffman在1952年提出,它通过构建一棵特殊的二叉树——哈夫曼树,使得高频字符对应较短的编码,而低频字符则对应较长的编码[^1]。 --- ### 哈夫曼编码的实现方法 #### 构造哈夫曼树 为了生成哈夫曼编码,首先需要构造一颗哈夫曼树。以下是具体的实现过程: 1. **统计字符频率** 对输入的数据进行析,计算每个字符出现的频率。例如,在给定字符串`"abcdabcdaaaaabbbdd"`中,字符`a`、`b`、`c`、`d`别出现了7次、5次、2次和4次[^5]。 2. **初始化优先队列** 将每个字符及其对应的频率作为叶子节点加入到一个最小堆(优先队列)中。这些节点初始时不与其他任何节点相连。 3. **逐步合并节点** 不断从堆中取出频率最低的两个节点,将其合并成一个新的父节点,新节点的频率等于这两个子节点频率之和。将这个新的父节点重新放入堆中。重复此操作直到堆中只剩下一个根节点,此时便得到了完整的哈夫曼树[^2]。 4. **配编码** 遍历哈夫曼树并为每条边指定方向:左支标记为`0`,右支标记为`1`。这样可以确保每个叶节点上的字符都拥有唯一的二进制编码序列[^4]。 --- #### 编码与解码流程 - **编码阶段** 利用上述生成的哈夫曼树建立一张映射表,记录各字符与其相应编码之间的关系。随后按照原始数据逐个查找匹配项完成整个字符串向二进制流转换的过程[^3]。 - **解码阶段** 解码时只需沿着已知的哈夫曼树自顶向下追踪读取每一位比特值直至抵达某个具体叶子位置即可恢复原字符;接着继续处理剩余部直到全部还原完毕为止。 --- ### Lua语言下的哈夫曼编码实现示例 下面提供了一个简单的Lua脚本用于演示如何创建基本版的哈夫曼编码器功能模块: ```lua function huffman_encode(freq_table) local nodes = {} -- 初始化节点列表 for char, freq in pairs(freq_table) do table.insert(nodes, {char=char, freq=freq}) end while #nodes > 1 do -- 排序按频率升序排列 table.sort(nodes, function(a,b) return a.freq < b.freq end) -- 取出前两最小频率节点 local left_node = table.remove(nodes, 1) local right_node = table.remove(nodes, 1) -- 创建内部节点并将它们组合在一起形成新的单一实体 local combined_freq = left_node.freq + right_node.freq table.insert(nodes, { char=nil, freq=combined_freq, left=left_node, right=right_node }) end return nodes[1] end -- 测试函数调用 local frequency_distribution = {&#39;a&#39;=7,&#39;b&#39;=5,&#39;c&#39;=2,&#39;d&#39;=4} root_of_huffmantree = huffman_encode(frequency_distribution) print(root_of_huffmantree) ``` 注意这段代码仅展示了基础框架逻辑并未包含实际编译细节以及最终输出结果解析等内容。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值