现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。
输入格式:
输入数据包括城镇数目正整数N(≤1000)和候选道路数目M(≤3N);随后的M行对应M条道路,每行给出3个正整数,分别是该条道路直接连通的两个城镇的编号以及该道路改建的预算成本。为简单起见,城镇从1到N编号。
输出格式:
输出村村通需要的最低成本。如果输入数据不足以保证畅通,则输出−1,表示需要建设更多公路。
输入样例:
6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3
输出样例:
12
思路
使用prim算法最小生成树,用一个数组c[ ]来记录连接这个点需要的的最小花费,做法就是先选定一个点,更新这个点到任意一个点的最小花费,找到到一个点的最小花费记录下来,然后更新这个新点到其他点的最小花费,与原先点进行比较;如果花费更少则更新数组。
#include<stdio.h>
#define Inf 0xffff
#define N 1004
struct node{
int e,p;
int m[N][N];
};
struct node g;
int c[N];//连通某个点需要的最低消费 ,在添加新点的时候更新
int cost;//总消费
void init(int n)
{
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i==j) {
g.m[i][j] = 0;
continue;
}
g.m[i][j] = Inf;
}
}
}
void prim(int s)
{
int mincost;
for(int i=1;i<=g.p;i++){ //利用某个点进行第一次更新
c[i] = g.m[s][i];
}
for(int i=1;i<g.p;i++){
mincost = Inf;
int k = -1;
for(int j=1;j<=g.p;j++){ //找到花费最小的点,加入集合
if(c[j]&&c[j]<mincost){
mincost = c[j];
k = j;
}
}
if(k!=-1){ //如果可以找到就将系那个花费加进去
cost += mincost;
c[k] = 0; //将加入的点进行重置,以便于判断是否生成树
}else { //如果没有则说明不存在最小生成树
break;
}
for(int j=1;j<=g.p;j++){ 对于找到的新的点进行更新c[ ]数组
if(g.m[k][j]&&g.m[k][j]<c[j]){
c[j] = g.m[k][j];
}
}
}
}
int main()
{
int n,m;
scanf("%d %d",&n,&m);
g.p = n;
g.e = m;
init(n);
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
g.m[u][v] = g.m[v][u] = w;
}
prim(1);
int flag = 1;
for(int i=1;i<=g.p;i++){
if(c[i]){
flag = 0;
break;
}
}
if(flag){
printf("%d\n",cost);
}
else {
printf("-1\n");
}
return 0;
}