Ask Me Anything:Free-form Visual Question Answering Based on Knowledge from External Sources

本文介绍了一种结合自动生成图像描述与外部知识库的视觉问答(VQA)模型。该模型利用CNN提取图像属性,生成图像描述,并从知识库中提取相关信息辅助回答问题。在COCO-QA数据集上取得69.73%的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  这篇文章将自动生成的图像描述与一个外部的Knowledge bases相融合,对问题进行预测。图像描述生成主要来自于image captions集,并且从Knowledge bases提取基于文本的外部知识。框架图:
这里写图片描述
   给定图像-问答对,首先利用CNN提取图像的Attributes集合。这些Attributes涉及范围很广,包括object,scenes,action,modifiers等等。同时采用一个state-of-art image caption方法,生成基于这些Attributes的captions集合。然后利用这些检测到的Attributes从KB中提取他们之间的相关信息。文中选中top-5的attributes,生成适用于Resource Description Framework(RDF) KB的一个query,RDF是KB的一种标准格式。 经过DBpedia的处理,从KB中提取出图像相关描述的一个段落,利用Doc2Vec对这些段落编码,形成段落的特征表达。最后将编码的Attributes,captions 和KB 相关信息输入到LSTM中,利用最大似然方法处理代价函数,预测答案。这种方法在COCO-QA,上精度达到了69.73%。
   Paper中提到,图像内容可以用Attributes来表示。文中从MS-COCO中提取图像attributes,并且把attributes预测当成是一个多标签分类任务,主要通过图像局部区域提取attributes。利用Vgg-Net16初始化attribute预测模型。
   这里写图片描述
   在Image caption模块,文中生成5个不同的image captions 形成图像的文本表达。
   利用DBpedia生成外部数据源
   文中通过最大化正确答案的概率训练VQA model
  这里写图片描述
  Q={q1,q2,q3…}表示问题句子,A={a1,a2,a3…}是答案句子。
   本文实验主要在COCO-QA和VQA dataset上进行。
   这里写图片描述
   这里写图片描述
   这里写图片描述
   总结:Knowledge Bases在VQA上的使用,可以在此寻求突破。

### 基于强化学习的时间知识图谱问答模型 RTA 的实现与应用 #### 时间知识图谱的重要性 时间知识图谱能够捕捉事件随时间的变化和发展,对于理解动态过程至关重要。通过构建包含时间维度的知识图谱,可以更精确地表示实体间的关系及其演变情况[^1]。 #### 强化学习的作用 利用强化学习算法来增强时间知识图谱问答系统的性能是一种有效的方法。该方法允许系统根据反馈不断调整自身的策略,在面对复杂查询时做出更加合理的决策。具体来说,强化学习可以帮助优化路径选择、关系预测以及答案生成等多个方面的工作流程。 #### 模型架构设计 为了有效地处理涉及时间因素的问题,RTA 模型通常会采用一种混合结构,即结合传统的神经网络组件(如LSTM 或 Transformer)用于编码输入序列中的时间和上下文信息,并引入基于Q-learning或者Policy Gradient的强化学习模块来进行下一步动作的选择和评估。这种组合不仅提高了对长期依赖性的建模能力,还增强了应对不确定性环境下的适应性和鲁棒性[^2]。 ```python import torch.nn as nn from transformers import BertModel, BertTokenizer class TimeQA(nn.Module): def __init__(self): super(TimeQA, self).__init__() self.bert = BertModel.from_pretrained('bert-base-uncased') def forward(self, input_ids, attention_mask=None): outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) return outputs.last_hidden_state[:, 0, :] ``` 此代码片段展示了如何初始化一个简单的BERT模型作为时间感知问答的基础框架的一部分。实际的应用中还需要加入更多针对特定任务定制化的层和技术细节以完成整个RTA体系的设计[^3]。 #### 应用案例分析 在智能客服领域,RTA 可以为用户提供更为精准的历史订单追踪服务;医疗健康行业中,则可用于辅助医生回顾患者病史并提供个性化的治疗建议;金融风控部门也能借助此类技术更好地识别潜在风险信号,提前采取预防措施等。总之,随着应用场景日益多样化,基于强化学习的时间知识图谱问答模型将在众多行业发挥重要作用[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值