为什么说bagging是减少variance,而boosting是减少bias?

本文探讨了Bagging和Boosting两种集成学习方法的核心差异。Bagging通过重采样降低模型方差,而Boosting则侧重于逐步减小偏差,提升预测精度。两者在降低bias和variance上的策略不同,导致其在实际应用中各有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.zhihu.com/question/26760839

Bagging对样本重采样,对每一重采样得到的子样本训练一个模型,最后取平均。由于子样本集的相似性以及使用的是同种模型。因此,各模型有近似相等的bias和variance。所以bagging后的bias和单个子模型的接近,一般不能减少bias。但另一方面,各子模型独立,则可以显著降低variance。若子模型完全相同,则variance也相同。bagging方法得到的各子模型是有一定的variance,但是也有差别。所以可以降低variance。

 

boosting是在sequential地最小化损失函数,所以bias自然逐步下降。但是由于采用sequential、adaptive的策略,各子模型之间是强相关的,于是子模型之和并不能显著降低variance。所以说boosting主要还是靠降低bias来提升预测精度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值