https://www.zhihu.com/question/26760839
Bagging对样本重采样,对每一重采样得到的子样本训练一个模型,最后取平均。由于子样本集的相似性以及使用的是同种模型。因此,各模型有近似相等的bias和variance。所以bagging后的bias和单个子模型的接近,一般不能减少bias。但另一方面,各子模型独立,则可以显著降低variance。若子模型完全相同,则variance也相同。bagging方法得到的各子模型是有一定的variance,但是也有差别。所以可以降低variance。
boosting是在sequential地最小化损失函数,所以bias自然逐步下降。但是由于采用sequential、adaptive的策略,各子模型之间是强相关的,于是子模型之和并不能显著降低variance。所以说boosting主要还是靠降低bias来提升预测精度。