人工神经网络简介
1.概念
人工神经网络是一种模仿大脑神经元结构的连接主义,如下图所示。其中,节点模拟神经元,节点之间的边模拟神经元之间的突触。输入节点的值x与对应边的权重w相乘再累加当做输出节点的输入,输出节点包含一个激活函数f,由该函数决定输出节点是兴奋还是抑制,即输出y。
用公式具体定义如下:
2.发展历史
1943年,美国心理学家McCulloch和数学逻辑学家Pitts建立了神经网络和数学模型,称之为MP模型。他们证明了单个神经元具有执行逻辑的功能,从此开创了人工神经网络研究的时代。
1958年,美国心理学家Rosenblatt提出了感知器(perceptron)算法。感知器是最简单的神经网络,只有一个神经元,它在MP模型的基础上加入了权值,可以实现