数据湖DeltaLake导入idea报错DeltaSqlBaseBaseListener is already defined as class DeltaSqlBaseBaseListener

本文解决了一个特定的IDEA导入错误:DeltaSqlBaseBaseListener被重复定义的问题。通过删除多余的编译文件夹targetscala-2.12src_managedmain,仅保留ANTLR4相关的文件夹,成功解决了IDEA中sbt项目的编译问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sbt编译完导入idea后报错DeltaSqlBaseBaseListener is already defined as class DeltaSqlBaseBaseListener

 

这个应该是重复文件吧,

 

删除了target\scala-2.12\src_managed\main 只保留了target\scala-2.12\src_managed\main\antlr4就正常了

 

### Kruskal Algorithm Implementation Using Adjacency List In implementing the Kruskal algorithm with an adjacency list, one must focus on efficiently managing edges while ensuring no cycles form during the construction of the minimum spanning tree (MST). The core idea is to sort all edges by their weights and add them incrementally into the MST as long as adding such an edge does not create a cycle. #### Edge Representation Edges can be represented as tuples containing two vertices connected by this edge along with its weight. For instance: ```python edges = [(weight, u, v), ...] ``` Where `u` and `v` represent nodes forming an undirected edge between them having some associated cost or distance denoted by `weight`. #### Union-Find Data Structure To detect cycles when inserting new edges, union-find data structure plays a crucial role. This allows efficient checking whether any pair of vertices belong to different components before connecting them through an additional link. Here’s how union-find operations could look like implemented within Python code snippet: ```python class UnionFind: def __init__(self, size): self.parent = list(range(size)) def find(self, p): if self.parent[p] != p: self.parent[p] = self.find(self.parent[p]) return self.parent[p] def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return False self.parent[rootP] = rootQ return True ``` This class provides methods for finding roots (`find`) and merging sets (`union`). If attempting to unite elements already part of the same set returns false indicating potential cyclic formation; otherwise true signifies successful addition without violating acyclic property constraints required for valid trees[^1]. #### Main Functionality With these tools prepared, here comes the main function responsible for constructing MST based upon given input graph described via adjacency lists alongside corresponding costs/weights attached directly inside those structures rather than separate matrices. Below demonstrates complete implementation including reading inputs from user-defined format suitable for testing purposes but adaptable towards more complex scenarios involving file parsing etcetera depending on specific requirements outside scope covered now: ```python from typing import List, Tuple def kruskal_algorithm(num_vertices: int, adj_list: List[List[Tuple[int]]]) -> float: # Initialize result variable storing total weight sum after completion. mst_weight_sum = 0 # Convert adjacency list representation back into simple weighted edge collection sorted ascendingly according to individual lengths/distances. all_edges = [] for i in range(len(adj_list)): for j, w in adj_list[i]: if i < j: # Avoid duplicate entries since it's bidirectional relationship. all_edges.append((w, i, j)) all_edges.sort() uf = UnionFind(num_vertices) # Iterate over ordered sequence trying out candidates until reaching desired cardinality equaling original count minus unit value due to connectivity requirement across entire network topology under consideration. added_edge_count = 0 for w, u, v in all_edges: if uf.union(u, v): # Only proceed further provided current candidate doesn't introduce loops/cycles breaking fundamental properties expected out resulting subgraph being indeed 'tree'. mst_weight_sum += w added_edge_count += 1 if added_edge_count >= num_vertices - 1: break return mst_weight_sum ``` The above method takes number_of_nodes together with preprocessed version converted earlier mentioned adjacency-list-style dataset representing underlying relationships among entities involved plus respective metrics quantifying interconnectivity strength levels present therebetween ultimately delivering final outcome reflecting overall efficiency achieved throughout process execution lifecycle stages traversed sequentially stepwise manner adhering closely theoretical foundations laid down previously discussed sections covering essential aspects related topic matter extensively explored hereinbefore[^2][^3].
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值