一、本地化部署的意义和 方法(WHY)
1.常见的大模型:ChatGPT、文心一言等,特点都是在线的模型,受限于网络和各种服务端限制
2.AI PC 强调使用本地的资源自由自主的运行大模型,本地化部署是核心
3.Ollama https://ollama.com/ 和LM Studio https://lmstudio.ai/
4.这里我们选择更加方便的ollama,运行第一个本地化模型,下载安装后ollama后,命令行运行:
ollama run qwen:14b
然后展开对话吧。
为什么是Ollma
无限接近docker的使用方法。带来方便的模型管理方式。
Ollama 支持的模型列表 https://ollama.com/library
不只是当前先进的语言模型,另外支持向量模型
二、本地化部署的模型能做什么(WHAT)
仅仅是运行一个模型么?本地化部署的意义:实现更强的功能
离大模型落地应用最近的工程化技术(RAG)
1.大模型自身的缺陷:模型滞后(时间落后)、模型幻觉(答非所问)、私有数据匮乏。
为解决这个问题:训练、微调、提示词功能、RAG分别从不同的角度,以不同的代价和效果来增强模型功能。
1. 训练模型 (Training a Model)
-
定义:从头开始训练一个模型,通常在大型数据集上进行。
-
优点:
-
可以针对特定任务从头开始学习。
-
能够获得与任务高度相关的模型表示。
-
缺点:
-
需要大量的标注数据和计算资源。
-
训练时间较长。
2. 微调模型 (Fine-tuning a Model)
-
定义:在预训练模型的基础上,针对特定任务进行额外的训练。
-
优点:
-
利用预训练模型的知识,减少所需数据和计算资源。
-
快速适应新任务。
-
缺点:
-
可能存在领域偏差,如果任务与预训练数据差异较大。
-
需要足够的领域特定数据进行有效微调。
3. 提示词工程 (Prompt Engineering)
-
定义:设计问题或任务的表述方式,以指导预训练模型生成期望的输出。
-
优点:
-
无需改变模型权重,通过调整输入来影响输出。
-
灵活,可以针对各种不同的任务快速设计提示词。
-
缺点:
-
需要创造性地设计有效的提示词,这可能需要试错。
-
对于复杂的任务,可能需要多个提示词或复杂的提示结构。
4. Retrieval-Augmented Generation (RAG)
-
定义:结合检索机制和序列生成模型,首先检索相关信息&#