本地化模型部署与应用

一、本地化部署的意义和 方法(WHY)

1.常见的大模型:ChatGPT、文心一言等,特点都是在线的模型,受限于网络和各种服务端限制

2.AI PC 强调使用本地的资源自由自主的运行大模型,本地化部署是核心

3.Ollama https://ollama.com/ 和LM Studio https://lmstudio.ai/

4.这里我们选择更加方便的ollama,运行第一个本地化模型,下载安装后ollama后,命令行运行:

ollama run qwen:14b

然后展开对话吧。

为什么是Ollma

无限接近docker的使用方法。带来方便的模型管理方式。

Ollama 支持的模型列表 https://ollama.com/library

不只是当前先进的语言模型,另外支持向量模型

二、本地化部署的模型能做什么(WHAT)

仅仅是运行一个模型么?本地化部署的意义:实现更强的功能

离大模型落地应用最近的工程化技术(RAG)

1.大模型自身的缺陷:模型滞后(时间落后)、模型幻觉(答非所问)、私有数据匮乏。

为解决这个问题:训练、微调、提示词功能、RAG分别从不同的角度,以不同的代价和效果来增强模型功能。

1. 训练模型 (Training a Model)

  • 定义:从头开始训练一个模型,通常在大型数据集上进行。

  • 优点:

  • 可以针对特定任务从头开始学习。

  • 能够获得与任务高度相关的模型表示。

  • 缺点:

  • 需要大量的标注数据和计算资源。

  • 训练时间较长。

2. 微调模型 (Fine-tuning a Model)

  • 定义:在预训练模型的基础上,针对特定任务进行额外的训练。

  • 优点:

  • 利用预训练模型的知识,减少所需数据和计算资源。

  • 快速适应新任务。

  • 缺点:

  • 可能存在领域偏差,如果任务与预训练数据差异较大。

  • 需要足够的领域特定数据进行有效微调。

3. 提示词工程 (Prompt Engineering)

  • 定义:设计问题或任务的表述方式,以指导预训练模型生成期望的输出。

  • 优点:

  • 无需改变模型权重,通过调整输入来影响输出。

  • 灵活,可以针对各种不同的任务快速设计提示词。

  • 缺点:

  • 需要创造性地设计有效的提示词,这可能需要试错。

  • 对于复杂的任务,可能需要多个提示词或复杂的提示结构。

4. Retrieval-Augmented Generation (RAG)

  • 定义:结合检索机制和序列生成模型,首先检索相关信息&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值