大模型微调的几种方式

大模型微调有全量微调FFT,和部分微调PEFT。

那么从训练数据的来源,以及训练的方法的角度,大模型微调有以下几个技术路线。

监督式微调SFT

第一个是监督式微调SFT(Superivised Fine Tuning),这个方法主要是用人工标注的数据,用传统机器学习中监督学习的方法,对大模型进行微调。

人类反馈的强化学习RLHF

第二个是基于人类反馈的强化学习微调RLHF(Reinforcement Learning with Human Feedback)这个方法的主要特点是把人类的反馈,通过强化学习的方式,引入到大模型的微调中去。让大模型生成的结果,更加符合人类的一些期望。

AI反馈的强化学习微调RLAIF

第三个是基于AI反馈的强化学习微调RLAIF(Reinforcement Learing with AI Feedback),这个原理大致跟RLHF类似,但是反馈的来源是AI。

这里是想解决反馈效率的问题,因为收集人类反馈,相对来说成本会比较高、效率比较低。

最终目的是效果最好

不同分类的角度,侧重点不一样,对同一个大模型微调,也不局限于某一个方案,可以多个方案一起。

微调的最终目的,是能够在可控成本的前提下,尽可能地提升大模型在特定领域的能力。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码

<think>嗯,用户问的是大模型微调几种方法。首先,我得确定大模型指的是像BERT、GPT这样的预训练语言模型微调方法有很多种,我需要回忆一下常见的几种,比如全参数微调、部分参数微调、适配器方法等等。 用户可能是刚接触这个领域,可能需要了解不同方法的优缺点以及适用场景。比如全参数微调虽然效果好,但计算成本高;而像LoRA这样的方法可以节省资源。可能需要分清楚这些方法的区别,帮助用户选择适合的。 还要注意用户是否有特定的应用场景,比如是在资源有限的情况下,还是追求最佳性能。但用户没提到具体场景,所以需要全面覆盖各种方法,并简要说明它们的适用情况。 另外,得确保回答的结构清晰,可能分点列出每种方法,包括原理和优缺点。同时要使用中文,避免专业术语过多,必要时解释一下。比如适配器方法是什么,如何插入到模型中。 还要检查是否有遗漏的方法,比如Prompt Tuning、Prefix-Tuning,这些最近比较流行的方法也需要包括进去。可能还需要提到多任务学习下的微调策略,虽然这可能属于应用层面。 需要确保每个方法的描述准确,比如LoRA是通过低秩矩阵来近似参数更新,而Adapter是在模型中插入小模块。同时,注意不要混淆不同方法,比如别把Adapter和LoRA混为一谈。 最后,总结一下不同方法的选择依据,比如计算资源、数据量、任务需求等,帮助用户根据实际情况做出决策。确保回答逻辑清晰,层次分明,用户能够一步步理解各种微调方法的特点。</think>大模型微调(Fine-tuning)是指基于预训练大模型(如BERT、GPT等),通过少量领域或任务相关数据进一步调整模型参数,使其适应特定任务需求。以下是常见的几种微调方法及其特点: --- ### **1. 全参数微调(Full Fine-tuning)** - **原理**:更新预训练模型的所有参数。 - **适用场景**:任务数据充足、计算资源丰富时。 - **优点**:充分利用模型能力,通常效果最佳。 - **缺点**:计算成本高,容易过拟合小数据集。 - **示例代码**: ```python model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased") optimizer = AdamW(model.parameters(), lr=5e-5) # 更新所有参数 ``` --- ### **2. 部分参数微调(Partial Fine-tuning)** - **原理**:仅微调模型的顶层(如分类层)或部分层(如最后几层Transformer)。 - **适用场景**:数据量较少或资源受限时。 - **优点**:节省计算资源,降低过拟合风险。 - **缺点**:可能无法充分挖掘模型潜力。 - **示例**: ```python # 冻结除分类层外的所有参数 for param in model.base_model.parameters(): param.requires_grad = False ``` --- ### **3. 适配器微调(Adapter Tuning)** - **原理**:在模型每一层插入小型可训练模块(Adapter),冻结原始参数,仅训练Adapter。 - **适用场景**:需要轻量级调整、多任务适配。 - **优点**:参数高效,易于扩展多任务。 - **缺点**:增加模型推理时间。 - **结构示意图**: ```plaintext [输入] → [预训练层] → [Adapter模块] → [输出] ``` --- ### **4. 前缀微调(Prefix Tuning)** - **原理**:在输入序列前添加可学习的“前缀向量”,引导模型生成特定输出。 - **适用场景**:生成式任务(如文本生成、对话系统)。 - **优点**:不修改模型原始参数,灵活性高。 - **缺点**:需设计合适的前缀长度和初始化策略。 - **示意图**: ```plaintext [可训练前缀] + [输入文本] → [模型生成结果] ``` --- ### **5. LoRA(Low-Rank Adaptation)** - **原理**:通过低秩矩阵分解,在原始权重矩阵旁添加低秩增量矩阵,仅训练增量部分。 - **适用场景**:资源有限但需高效微调。 - **优点**:参数效率极高,几乎不增加推理耗时。 - **缺点**:需选择适配的秩(rank)和模块。 - **公式**: $$W_{\text{更新}} = W_{\text{原始}} + \Delta W, \quad \Delta W = A \cdot B \quad (A \in \mathbb{R}^{d \times r}, B \in \mathbb{R}^{r \times d})$$ --- ### **6. 提示微调(Prompt Tuning)** - **原理**:通过设计或学习特定的“提示词”(Prompt),引导模型输出预期结果。 - **适用场景**:少样本或零样本学习。 - **优点**:无需修改模型参数,依赖数据少。 - **缺点**:提示设计对效果影响大。 - **示例**: ```plaintext 输入:"[X] 这部电影很棒。情感:积极" 输出:"[X] 这个产品很差。情感:[MASK]" ``` --- ### **选择方法的依据** | **方法** | **参数量** | **计算成本** | **适用数据量** | **典型场景** | |-------------------|------------|--------------|----------------|----------------------| | 全参数微调 | 高 | 高 | 大 | 通用任务 | | 适配器/LoRA | 低 | 中 | 中/小 | 多任务、资源受限 | | 前缀/Prompt | 极低 | 低 | 极小 | 少样本、生成式任务 | --- ### **总结** - **资源充足时**:优先全参数微调。 - **资源受限时**:选择Adapter、LoRA或Prompt Tuning。 - **生成任务**:尝试Prefix Tuning或Prompt Tuning。 - **多任务场景**:适配器微调更具扩展性。 可根据任务需求、数据规模和硬件条件灵活选择或组合上述方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值