大模型Agent指的是基于大规模语言模型(Large Language Model, LLM)的自主智能体。这种智能体能够通过理解和生成自然语言来进行复杂的决策和任务执行,具备一定的自主性和交互能力。大模型Agent能够处理和理解大量的文本信息,通过预训练和任务适应,实现对特定领域问题的解答和操作。
基于大模型训练Agent主要涉及到模型微调(Fine-tuning)、指令微调(Instruction Tuning)、工具调用以及多智能体协作等技术。训练Agent的步骤:
-
选择基础模型:首先,需要选择一个预训练的大模型作为基础,例如LLaMA、GPT-3等。
-
数据准备:根据应用场景准备训练数据,这些数据应包括用户指令、Agent执行的动作、工具调用等。
-
模型微调:使用准备好的数据对基础模型进行微调,以适应特定的任务和工具。
-
指令微调:通过指令微调技术,让模型更好地理解和执行复杂的指令。
-
工具调用:训练模型学会调用外部工具,如API、数据库等,以增强其解决问题能力。
-
多智能体协作:如果需要,训练模型与其他智能体协作完成任务。
代码示例:
以下示例使用了伪代码,假设使用的是Python和PyTorch框架。
` <table width="866"><tbody><tr style="background-color: transparent;border-top: none;"><td data-line-number="1" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="1" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="color: rgb(160, 161, 167);font-style: italic;line-height: 23px;font-size: 12px;"># 导入必要的库</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="2" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="2" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;"><span style="color: rgb(166, 38, 164);line-height: 23px;">import</span> torch</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="3" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="3" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;"><span style="color: rgb(166, 38, 164);line-height: 23px;">from</span> torch <span style="color: rgb(166, 38, 164);line-height: 23px;">import</span> nn</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="4" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="4" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;"><span style="color: rgb(166, 38, 164);line-height: 23px;">from</span> transformers <span style="color: rgb(166, 38, 164);line-height: 23px;">import</span> AutoModelForSeq2SeqLM, AutoTokenizer, Seq2SeqTrainingArguments, Seq2SeqTrainer</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="5" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="5" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><br></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="6" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="6" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="color: rgb(160, 161, 167);font-style: italic;line-height: 23px;font-size: 12px;"># 选择模型和分词器</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="7" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="7" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">model_name = <span style="color: rgb(80, 161, 79);line-height: 23px;">"path_to_your_pretrained_model"</span></span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="8" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="8" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">tokenizer = AutoTokenizer.from_pretrained(model_name)</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="9" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="9" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">model = AutoModelForSeq2SeqLM.from_pretrained(model_name)</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="10" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="10" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><br></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="11" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="11" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="color: rgb(160, 161, 167);font-style: italic;line-height: 23px;font-size: 12px;"># 准备数据(简化表示)</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="12" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="12" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">train_data = [</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="13" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="13" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">{<span style="color: rgb(80, 161, 79);line-height: 23px;">"input"</span>: <span style="color: rgb(80, 161, 79);line-height: 23px;">"Translate this sentence to Chinese"</span>, <span style="color: rgb(80, 161, 79);line-height: 23px;">"output"</span>: <span style="color: rgb(80, 161, 79);line-height: 23px;">"翻译这个句子到中文"</span>},</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="14" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="14" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="color: rgb(160, 161, 167);font-style: italic;line-height: 23px;font-size: 12px;"># ... 更多数据</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="15" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="15" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">]</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="16" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="16" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><br></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="17" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="17" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="color: rgb(160, 161, 167);font-style: italic;line-height: 23px;font-size: 12px;"># 微调参数</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="18" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="18" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">training_args = Seq2SeqTrainingArguments(</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="19" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="19" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">output_dir=<span style="color: rgb(80, 161, 79);line-height: 23px;">"./results"</span>,</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="20" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="20" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">num_train_epochs=<span style="color: rgb(152, 104, 1);line-height: 23px;">3</span>,</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="21" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text-align: right;"><br></td><td data-line-number="21" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;"><span style="font-size: 12px;">per_device_train_batch_size=<span style="color: rgb(152, 104, 1);line-height: 23px;">4</span>,</span></td></tr><tr style="background-color: transparent;border-top: none;"><td data-line-number="22" style="padding: 0px;border-width: initial;border-style: none;border-color: initial;color: rgb(110, 110, 127);vertical-align: top;text