理解「时间复杂度」需要「动态」去看它

本文通过Python绘制了不同数据规模下各种时间复杂度的曲线,包括O(logn)、O(1)、O(nlogn)、O(n)和O(n^2),展示了小数据和大数据规模下的增长趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小数据规模情况下

在这里插入图片描述

大数据规模情况下

源代码:

Python 代码:

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

n = 100

x = np.arange(1, n + 1)

y1 = [np.log2(i) for i in range(1, x.size + 1)]
y2 = [1 for _ in range(1, x.size + 1)]
y3 = [i * np.log2(i) for i in range(1, x.size + 1)]
y4 = [i for i in range(1, x.size + 1)]
y5 = [i * i for i in range(1, x.size + 1)]

fig, ax = plt.subplots(figsize=(8, 8))
ax.plot(x, y1, label='$log_{2} n$')
ax.plot(x, y2, label='$1$')
ax.plot(x, y3, label='$n \log_{2} n$')
ax.plot(x, y4, label='$n$')
ax.plot(x, y5, label='$n^2$')
plt.xlim(0, 100)
plt.ylim(0, 100)

plt.legend(fontsize=16)
plt.savefig("1.jpg")
plt.show()

在这里插入图片描述

源代码:

Python 代码:

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

n = 100000

x = np.arange(1, n + 1)
y1 = [np.log10(i) for i in range(1, x.size + 1)]
y2 = [1 for _ in range(1, x.size + 1)]
y3 = [i * np.log10(i) for i in range(1, x.size + 1)]
y4 = [i for i in range(1, x.size + 1)]
y5 = [i * i / 10000 for i in range(1, x.size + 1)]

fig, ax = plt.subplots(figsize=(16, 4))
ax.plot(x, y1, label='$log_{10} n$')
ax.plot(x, y2, label='$1$')
ax.plot(x, y3, label='$n \log_{10} n$')
ax.plot(x, y4, label='$n$')
ax.plot(x, y5, label='$n^2/10000$')
plt.xlim(0, 100000)
plt.ylim(0, 800000)

plt.legend(fontsize=16)
plt.savefig("2.jpg")

plt.show()
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值