CD的survey 边读边记(自用)

A review of multi-class change detection for satellite remote sensing imagery

传统的二值变化检测(BCD)只关注双时态图像之间的变化和无变化区域,这导致了应用的局限性

为了更全面地概述不同类别的 MCD 方法,本节根据变化的不同类别将 MCD 分为三类:1)三元变化 检测,2)多重变化检测,3)语义变化检测。

      

 三元变化检测:

与传统的BCD仅检测变化区域不同,三元 CD的目的是检测变化并对正变化和负变化进行分 类。在实践中,正变化类(C+)通常代表新的人工 特征(例如洪水后重建的建筑物),而负变化类 (C-)则代表相反的变化。笼统地说,C+是出现的 变化类,C-是消失的变化类。

多重变化检测:

输出结果:变化A、变化B、变化C。

算法不理解A是“植被 → 城市”,B是“水体 → 沙地”,这些语义是分析者后续解读的结果

语义变化检测:

输出结果:

类别1:植被 → 城市

类别2:水体 → 沙地

类别3:农田 → 森林

这里的结果已经包含了具体的语义信息,直接表述了地物的变化类别。


另一篇survey

Change Detection Methods for Remote Sensing in the Last Decade: A Comprehensive Review

Guangliang Cheng 1,*,† , Yunmeng Huang 2,†, Xiangtai Li 3, Shuchang Lyu 2 , Zhaoyang Xu 4, Hongbo Zhao 2 , Qi Zhao 2 and Shiming Xiang 5

了解到数据集的种类有:SAR数据(合成孔径雷达)、多光谱数据(multispectral data)、高光谱数据(hyperspectral data)、异构数据(heterogeneous data)和3D变化检测数据(3D change detection data)。我们组里比较常用的是多光谱数据,常见数据集有:LEVIR-CD+ , CDD , WHU-CD , SECOND , and SYSU-CD 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值