A review of multi-class change detection for satellite remote sensing imagery
传统的二值变化检测(BCD)只关注双时态图像之间的变化和无变化区域,这导致了应用的局限性
为了更全面地概述不同类别的 MCD 方法,本节根据变化的不同类别将 MCD 分为三类:1)三元变化 检测,2)多重变化检测,3)语义变化检测。
三元变化检测:
与传统的BCD仅检测变化区域不同,三元 CD的目的是检测变化并对正变化和负变化进行分 类。在实践中,正变化类(C+)通常代表新的人工 特征(例如洪水后重建的建筑物),而负变化类 (C-)则代表相反的变化。笼统地说,C+是出现的 变化类,C-是消失的变化类。
多重变化检测:
输出结果:变化A、变化B、变化C。
算法不理解A是“植被 → 城市”,B是“水体 → 沙地”,这些语义是分析者后续解读的结果
语义变化检测:
输出结果:
类别1:植被 → 城市
类别2:水体 → 沙地
类别3:农田 → 森林
这里的结果已经包含了具体的语义信息,直接表述了地物的变化类别。
另一篇survey
Change Detection Methods for Remote Sensing in the Last Decade: A Comprehensive Review
Guangliang Cheng 1,*,† , Yunmeng Huang 2,†, Xiangtai Li 3, Shuchang Lyu 2 , Zhaoyang Xu 4, Hongbo Zhao 2 , Qi Zhao 2 and Shiming Xiang 5
了解到数据集的种类有:SAR数据(合成孔径雷达)、多光谱数据(multispectral data)、高光谱数据(hyperspectral data)、异构数据(heterogeneous data)和3D变化检测数据(3D change detection data)。我们组里比较常用的是多光谱数据,常见数据集有:LEVIR-CD+ , CDD , WHU-CD , SECOND , and SYSU-CD 。