“柱状图中最大的矩形“算法详解

柱状图中最大的矩形算法详解

在这里插入图片描述

一、问题描述

给定n个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为1。要求在该柱状图中,找出能够勾勒出来的矩形的最大面积。

例如:
输入: heights = [2,1,5,6,2,3]
输出: 10
解释: 最大的矩形为图中红色区域,面积为10 。

二、解题思路
  1. 暴力解法
    • 对于每一个柱子,我们尝试以它为高,向左右两边扩展,找到能包含它的最大宽度。
    • 具体做法是,对于数组中的每一个元素heights[i],从i位置向左遍历找到第一个小于heights[i]的柱子位置left,从i位置向右遍历找到第一个小于heights[i]的柱子位置right。那么以heights[i]为高的矩形宽度就是right - left - 1,面积就是heights[i] * (right - left - 1) 。通过遍历整个数组,记录下最大的面积。
    • 时间复杂度:这种方法需要两层循环,外层循环遍历每个柱子,内层循环分别向左和向右寻找边界,所以时间复杂度为O(n2)O(n^2)O(n2),其中n是柱子的数量。
  2. 单调栈解法
    • 单调栈是一种特殊的数据结构,它维护栈内元素的单调性(单调递增或单调递减)。在本题中,我们使用单调递增栈。
    • 遍历柱子高度数组,当遇到的高度大于栈顶元素对应的高度时,将当前索引压入栈。如果遇到的高度小于栈顶元素对应的高度,说明栈顶元素对应的柱子的右边边界已经找到(就是当前位置),此时弹出栈顶元素。设弹出的栈顶元素索引为top,那么它对应的矩形宽度就是当前位置i(右边边界)减去栈顶元素(新的栈顶)的下一个位置(左边边界),高度就是弹出的栈顶元素对应的高度heights[top] 。通过不断维护和计算,我们可以得到最大的矩形面积。
    • 时间复杂度:由于每个元素最多进栈和出栈一次,所以时间复杂度为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哲谐嘉xhm

您的赞赏是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值