李卓璐
随便记记啦
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
asr_offline训练->onnx转化->测试全流程
完成关于asr模型的改造,压缩模型体积,提高推理性能。官方model.pt 220M,量化后68M 0.96S/条 官方model.pt 128M,量化后15M 0.6s/条性能计算方式:for跑了100次,然后delay/100得到的每条执行时间。GitHub模型网址:下述代码源码在中能找到16k中文语音识别Aishell-1学术数据集 使用ftp的put进行数据集上传至Linux上代码在data_process.py代码在data.sh最后data的结构:模型链接去掉mod原创 2025-04-11 14:56:22 · 93 阅读 · 0 评论 -
一篇关于我对tensorrt的理解(包括:概念+代码实战)
TensorRT是英伟达推出的一个深度学习推理(Inference)优化器,主要用于提高模型在NVIDIA GPU上的推理速度。它的核心目标是通过优化模型结构、减少计算资源消耗,显著提升模型推理速度(降低延迟)和吞吐量(每秒处理的样本数),同时保持模型精度。1)支持将主流框架(如 TensorFlow、PyTorch、MXNet)训练好的模型转换为 TensorRT 优化格式,常用中间格式为 ONNX。但注意:在pytorch框架下,使用trt必须通过onnx模型解析才可以构建。原创 2025-03-24 17:32:18 · 349 阅读 · 0 评论 -
已解决:python多线程使用TensorRT输出为零?附tensorrt推理代码
查了一些博客,说有可能是我cudnn版本和tensorrt的版本不和,但看有些人就算换完版本还是没有输出,我查我是有输入和一个模型的输出,因此我没有考虑换cudnn的版本。(更简单的理解:因为执行程序时多个不同类别模型在一起调用cuda来构建上下文,这就会导致上下文管理混乱,最终造成报错)因为网上的tensorrt推理代码都不全,又臭又长又看不懂,这里一起附上tensorrt推理代码。跟我猜的差不多就是因为trt没有输出,trt线路没通造成报错。管理CUDA上下文,以保证每个程序使用自己独立的上下文运行。原创 2025-03-20 14:51:30 · 814 阅读 · 0 评论 -
CUDA12.1 cudnn9.0.1 python3.10.12配置TensorRT8.6.1,完成yolov12tensorRT推理完整过程
我在win上先进行解压然后上传到了Linux,直接上传会报错,所以进行拆分zip然后上传,但是却将文件夹中的重要文件丢失,找了很多解决方法,最后才关注到我的lib文件夹里面的文件少了很多,重新使用WiFi进行下载观察文件,重新上传,问题解决。千万不要在win的环境下进行安装包的解压操作,因为这样会丢失很多配置文件,后续会报错找不到libnvinfer.so.8等等。具体应该下载哪一版本的TensorRT呢,这里我问的秘塔AI,你们也可以问问它。下面展示了三种不同需求的模型推理代码,都可放心使用。原创 2025-03-10 15:41:43 · 593 阅读 · 0 评论 -
yolo系列-yolov12训练自己数据集详细过程
下载对应的预训练模型的权重文件。1.发现需要额外添加coco.yaml,在路径/home/user/yolov12-main/ultralytics/cfg/datasets/coco.yaml下,将复制其中的内容。在yolov12-main文件夹下新建coco.yaml,粘贴刚刚所复制的内容,更改nc和类名。另外一种指定显卡的方式,在yolov12-main下打开终端输入export CUDA_VISIBLE_DEVICES=“0,1,2,3”,如果设定1,那么程序运行过程中只能看到"CUDA:1"。原创 2025-03-07 09:26:41 · 733 阅读 · 0 评论 -
深度学习实战-yolox训练json格式数据集(附全过程代码,超详细教程,无坑!)
之前有发过一篇关于这篇文章补充一下如何使用coco的json格式完成yolox的训练。数据集格式。原创 2025-03-05 14:04:35 · 237 阅读 · 0 评论 -
在模型训练过程中如何减轻显存负担?
在模型训练过程中如何减轻显存负担?原创 2025-01-02 09:56:25 · 266 阅读 · 0 评论 -
Transformers-Evaluate篇
总结:在scikit-learn的1.5.2版本中F1-score返回一个浮点数,而不是一个numpy标量,因此问题解决。处设置断点,可以看见每一次循环,refs, preds获得一个batch(list)信息准备计算。可以看到该模块下包含很多种任务,这些任务是现在可以使用huggingface直接完成的。任意选择一个任务进入,可以观察到平台为我们推荐相关的模型。方法2.每次取一个batch进行迭代计算。references相当于labels。在执行上述代码时可能会出现下述错误,该页面下点击Tasks。原创 2024-12-23 11:06:55 · 605 阅读 · 0 评论 -
VC++动态库DLL与静态库LIB编程
a.静态库lib的代码在编译时会直接塞到EXE中,EXE可以在用户端直接执行而不需要lib库的支持。因此,打包时不用给客户lib代码了,但EXE可执行文件体积会很大。注意:静态库中不能包含其他的静态库或动态库。b.动态库何时加载和卸载取决于EXE中的指令,调用API动态完成dll库的支持。EXE可执行文件体积会很小,但发布时需要打包dll文件,一起上传才可以执行EXE全部功能。原创 2024-12-07 20:43:01 · 798 阅读 · 0 评论 -
Transformers-Datasets篇(公开数据集和自己数据集的数据预处理使用方法总结)
如果遇到复杂格式的数据集需要自己去总结字段时候,可以参考hugging face基础入门——Dataset(2)加载本地数据集。原创 2024-12-22 20:08:52 · 1199 阅读 · 0 评论 -
如何 利用huggingface平台 使用pipline 调用模型 完成图像识别(或者其他)任务呢?
在这篇文章中介绍了基本使用方法,接下来举个实际案例(图像识别)进一步了解huggingface。原创 2024-12-18 15:33:44 · 568 阅读 · 0 评论 -
transformers环境配置+文本分类实例
注意 transformers==4.33.2 的下载版本,下载太高容易出错。点击生成的网址,在网页中弹出如下结果验证transformers环境搭建成功!最好选用python3.9因为3.8会导致jupyterlab下载失败。这样的话默认使用清华镜像下载,就不会每次都去在指令后添加了。这里选择11以上的且小于你电脑配置的就可以。这里下载所有实验中常见需要的包。原创 2024-12-17 21:32:34 · 728 阅读 · 0 评论 -
通过情感分类实例 详细介绍如果借助Huggingface平台 完成Transformers模型运行(包括配置环境-tokenizer-Model-输出头-预测)
attention_mask和padding是配套使用的,当人为去修改padding的时候,也要把attention_mask里面的参数进行修改。下载Huggingface包,Huggingface可以说是一个社区,集成了很多nlp的模型、数据集、预训练权重文件等等,并且免费,只需要pip install下载即可。那么用什么做分类就选择什么输出头,就import什么东西。代码中使用了自动分词器选择,它是由checkpoint指定的预训练模型关联的,不用我们自己选择tokenizer,它自动帮我们选择好了。原创 2024-12-14 16:11:30 · 1015 阅读 · 0 评论 -
《掌握Transformers训练+预测看一篇即可》 详细讲解 如何使用“自己“数据集微调Transformers文本分类模型,并使用自己预训练的模型进行本地预测?
喜欢看文字的跟着我,我会挑重点的对上述课程的重要知识点融入自己的理解进行汇总。因为DataLoader里面有聚合的作用,因为label本身就是数字所以可以进行聚合成tensor,但是对于文本来说没用,因此需要重新改写聚合。,即在训练完成后加载最优模型,可以看见最优模型为-330,因此,我们将该文件夹拿出放在根目录下并取名为best_model。熟悉这个流程后,我们进行第二部分,对第一部分代码的优化。加上tokenizer的完整代码,此时的文本和标签的输出都变成了tensor,可以加载带网络中去啦。原创 2024-12-23 15:45:40 · 258 阅读 · 0 评论 -
Linux驱动更新,以及ubuntu18.04升级22.04过程记录
驱动更新,ubuntu系统升级,省心避坑,全过程记录。原创 2024-07-09 14:49:20 · 968 阅读 · 0 评论 -
Ubuntu18.04安装ROS详细教程+错误bash: /opt/ros/noetic/setup.bash:No such file or directory
1.配置ubuntu的软件和更新;(这步其实系统默认选择不动就行。2.设置安装源;官网默认安装源3.设置key;4.安装;5.配置环境变量。6.验证如果出现如下输出内容,证明ROS安装成功。7.测试。原创 2024-03-03 19:44:48 · 3937 阅读 · 0 评论 -
超简单Windows10下深度学习环境配置,零出错!
cuda cudnn anaconda pycharm pytorch环境原创 2024-06-05 14:33:13 · 227 阅读 · 0 评论 -
深度学习实战-yolox训练ExDark数据集所遇到的错误合集
训练时出现ap为零;训练时始终l1_loss:0;训练时测试阶段出现.xml文件不存在、xx地址下不存在a.txt、找不到xxx.txt;训练时loss经常会出现'nan'原创 2024-05-27 15:34:12 · 384 阅读 · 0 评论 -
深度学习实战-yolox训练ExDark数据集(附全过程代码,超详细教程,无坑!)
yolox-voc格式的ExDark数据集制作详细过程+yolox训练前代码调试内容。原创 2024-05-27 15:06:12 · 799 阅读 · 0 评论 -
学习笔记3-数据增强代码学习
import osimport torchfrom torchvision import transformsfrom torchvision import datasetsfrom PIL import Image#数据读取及预处理data_dir='./datasets'train_dir=data_dir+'/train'valid_dir=data_dir+'/valid'#数据预处理模块transformsdata_transforms={ 'train':tran原创 2021-10-12 10:15:29 · 267 阅读 · 0 评论 -
学习笔记52-关于深度学习中的分类器汇总,模型对类别概率计算输出代码。
基础分类器:1、SVM:线性核SVM: 一般应用于多分类,分类的结果(如3分类)最后会给出(约等于)1、2、3的值代表第1、2、3类。非线性核SVM: 一般应用于二分类问题上。注意:SVM需要训练,如通过caffe提取特征后,用提取的特征训练svm2、softmax分类:其实它是逻辑回归的拓展,应用于多分类,在caffe、pytorch、TensorFlow中均可实现softmax,可以直接端到端地训练分类,比较常用。注意:分类的结果是给出的一个概率向量,相应的那个概率值高即为预测的哪个类,类原创 2022-03-29 09:16:38 · 5717 阅读 · 0 评论 -
学习笔记22-分类网络自动创建各自类别的测试集和训练集(代码已实现)
只需要创建一个original文件夹,把图片放里面就ok,每个类别的train和val文件夹自动生成。#自动分train和val文件import osfrom shutil import copy, rmtreeimport randomdef mk_file(file_path: str): if os.path.exists(file_path): # 如果文件夹存在,则先删除原文件夹在重新创建 rmtree(file_path) os.ma原创 2022-03-12 16:05:08 · 959 阅读 · 0 评论 -
学习笔记26-解决:载入预训练模型时Pytorch遇到权重不匹配的问题(附+修改后的预训练模型载入和冻结特征权重完整代码)
在pytorch微调mobilenetV3模型时遇到的问题1.KeyError: ‘features.4.block.2.fc1.weight’这个是因为模型结构修改了,没有正确修改预训练权重,导致载入权重与模型不同,使用下面说的两种方法适当修改载入权重即可。2.size mismatch for fc.weight: copying a param with shape torch.Size([1000, 1280]) from checkpoint, the shape in current mo原创 2022-03-15 15:00:20 · 27249 阅读 · 12 评论 -
可视化学习笔记8-使用python transforms数据增强后效果图(附结果图)
from torchvision import transformsimport PIL.Image as Imageimport matplotlib.pyplot as pltimport numpy as npimage = Image.open("try/0.jpg")transform = transforms.Compose([ transforms.RandomResizedCrop(224),原创 2022-03-12 15:29:20 · 6537 阅读 · 0 评论 -
学习笔记25-利用python批量修改更改文件、文件夹名称(附代码)
from skimage import data_dir, exposure,io, transform, colorimport numpy as npdef convert(f): rgb = io.imread(f) # 依次读取rgb图片 dst = transform.resize(rgb, (1200, 1200)) # 将图片分辨率转换为1200*1200 return dst str = 'E:/study/MobileNetV3/image_v3原创 2022-03-14 16:13:49 · 6267 阅读 · 0 评论 -
学习笔记20-图像增强-利用python批量将4张图片合并拼接 mosaic?(附结果图)
import PIL.Image as Imageimport osIMAGES_PATH = 'E:\\study\\MobileNetV3\\image\\train\\Sidenormal\\' # 图片集地址IMAGES_FORMAT = ['.jpg'] # 图片格式IMAGE_SIZE = 256 # 每张小图片的大小IMAGE_ROW = 2 # 图片间隔,也就是合并成一张图后,一共有几行IMAGE_COLUMN = 2 # 图片间隔,也就是合并成一张图后,一共有几列原创 2022-03-12 15:57:11 · 1795 阅读 · 0 评论 -
学习笔记24-利用python将批量图片合成视频(附代码及结果)
实验了很多博客,这个可以!出处import cv2size = (1200,1200)#这个是图片的尺寸,一定要和要用的图片size一致#完成写入对象的创建,第一个参数是合成之后的视频的名称及保存地址,第二个参数是可以使用的编码器,第三个参数是帧率即每秒钟展示多少张图片,第四个参数是图片大小信息videowrite = cv2.VideoWriter(r'E:\study\Picture_video\out\test.mp4',-1,0.5,size)#0.5是帧数,代表2s一张图,size是图片尺原创 2022-03-14 16:02:28 · 1646 阅读 · 0 评论 -
学习笔记27-将批量图片合成视频代码
import cv2size = (680,460)#这个是图片的尺寸,一定要和要用的图片size一致#完成写入对象的创建,第一个参数是合成之后的视频的名称及保存地址,第二个参数是可以使用的编码器,第三个参数是帧率即每秒钟展示多少张图片,第四个参数是图片大小信息videowrite = cv2.VideoWriter(r'D:\weixin\test.mp4',-1,10,size)#0.5是帧数,代表2s一张图,size是图片尺寸img_array=[]for filename in [r'D:原创 2022-03-29 08:18:58 · 453 阅读 · 0 评论 -
可视化学习笔记7-将训练的loss,acc结果生成npy格式,读取npy利用matplotlib.pyplot绘图。(附结果图)
npy文件介绍: NumPy 为 ndarray 对象引入了一个简单的文件格式:npy。是numpy专用的二进制文件,用于存储重建 ndarray 所需的数据、图形、dtype 和其他信息。是一种常用的保存模型文件的格式。生成loss.npy和acc.npy代码如下:running_loss = 0.0loss = loss_function(logits, labels.to(device))running_loss += loss.item() Train_Loss =原创 2022-03-12 15:49:55 · 3853 阅读 · 0 评论 -
学习笔记21-.pth转.pt代码实现(附结果图)
import torchfrom torch.utils.mobile_optimizer import optimize_for_mobilefrom model_v3 import mobilenet_v3_largefrom train import n_classes #此变量是调的train.py种类超参数model = mobilenet_v3_large(num_classes=n_classes)model.load_state_dict(torch.load("model/原创 2022-03-12 15:59:23 · 3841 阅读 · 4 评论 -
学习笔记28-pytorch框架下模型推理时间,单张FPS计算代码。
FPS画面每秒传输帧数,多少帧每秒,或每秒多少帧。F就是英文单词Frame(画面、帧),P就是Per(每),S就是Second(秒)model.eval() # 进入eval模式(即关闭掉droout方法 total_time = 0 with torch.no_grad(): # predict class input = img.to(device) torch.cuda.synchronize()原创 2022-03-29 10:16:45 · 4419 阅读 · 0 评论 -
可视化学习笔记9-pytorch cifar10数据可视化,归一化可视化。
cifar10数据可视化import osos.environ['KMP_DUPLICATE_LIB_OK'] = 'True'import torchimport torchvisionimport torchvision.transforms as transforms#下载数据预处理transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))]原创 2022-05-18 14:57:30 · 900 阅读 · 0 评论 -
学习笔记31-自回归-建立时间序列预测模型(ARIMA方法)
建立时间序列预测模型(ARIMA方法)原创 2022-09-01 21:23:01 · 3772 阅读 · 2 评论 -
学习笔记49-overleaf-LaTeX新手指南
overleaf官网1.公式篇超详细 LaTex数学公式2.表格制表命令使用教程在线表格编辑器3.整体介绍介绍/使用教程原创 2022-07-07 09:39:30 · 1553 阅读 · 0 评论 -
学习笔记30-Top1和Top5定义与代码复现
定义Top-1: Accuracy是指排名第一的类别与实际结果相符的准确率,就是你预测的label取最后概率向量里面最大的那一个作为预测结果,如过你的预测结果中概率最大的那个分类正确,则预测正确。否则预测错误。Top-5: Accuracy是指排名前五的类别包含实际结果的准确率,就是最后概率向量最大的前五名中,只要出现了正确概率即为预测正确。否则预测错误。TOP-5正确率=(所有测试图片中正确标签包含在前五个分类概率中的个数)除以(总的测试图片数)TOP-5错误率=(所有测试图片中正确标签不在前五原创 2022-03-31 09:50:57 · 5628 阅读 · 6 评论 -
可视化学习笔记5-pytorch利用summary()打印神经网络的结构
安装指令 pip install torchsummary使用方法from model_L5 import mobilenet_L5_largefrom skimage import iofrom torchsummary import summaryimg_path = '10.jpg'img = io.imread(img_path)img = transform.resize(img, (224, 224))model = mobilenet_L5_large(num_classes=原创 2022-04-08 10:35:29 · 4144 阅读 · 0 评论 -
可视化学习笔记6-混淆矩阵可视化分类模型预测结果(附代码)
混淆矩阵是机器学习中总结分类模型预测结果的情形分析表,以矩阵形式将数据集中的记录按照真实的类别与分类模型预测的类别判断两个标准进行汇总。其中矩阵的行表示真实值,矩阵的列表示预测值。sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)y_true真实标签值y_pred预测标签值labels=None类别,可以手动设置,也可自动生成。sample_weight 是样本权重定义/绘制混淆矩原创 2022-04-06 15:06:25 · 4906 阅读 · 0 评论 -
可视化学习笔记1-pytorch netron可视化网络结构图
前提安装netron、torch、torchvision包执行下方代码即可# 针对有网络模型,但还没有训练保存 .pth 文件的情况import netronimport torch.onnxfrom torch.autograd import Variablefrom torchvision.models import resnet50 # 以 resnet18 为例myNet = resnet50() # 实例化 resnet18x = torch.randn(16, 3, 40,原创 2022-05-18 14:37:18 · 1059 阅读 · 0 评论 -
可视化学习笔记10-pytorch cifar10批量数据预处理结果可视化
使用cifar10数据集,概率为0.5的随机遮挡批量结果可视化。import torch as timport numpy as npimport torchvision as tvimport matplotlib.pyplot as pltfrom torchvision import transformsfrom torchtoolbox.transform import CutoutROOT = './data/cifar-10'BATCH_SIZE = 128train_tr原创 2022-05-18 15:01:32 · 826 阅读 · 0 评论 -
可视化学习笔记2-pytorch 可视化卷积网络中间特征层
输出的结果是两张特征图(可以实现跑一次看多层),代码如下。import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport requestsimport cv2import torchfrom torch import nnimport torch.nn.functional as Ffrom torchvision import modelsfrom torchvision import transfo原创 2022-05-18 14:47:09 · 1530 阅读 · 0 评论