- 博客(301)
- 资源 (1)
- 收藏
- 关注
原创 多式联运物流管理系统的设计与实现(原创)
在添加车厢页面,选择所属车次,填写车厢编号、车厢类型、载重能力、状态等信息,点击“添加”按钮,系统将车厢信息保存到数据库中,并跳转到铁路运输资源列表页面。在添加车厢页面,选择所属车次,填写车厢编号、车厢类型、载重能力、状态等信息,点击“添加”按钮,系统将车厢信息保存到数据库中,并跳转到铁路运输资源列表页面。在添加用户页面,填写用户名、密码、角色等信息,点击“添加”按钮,系统将验证用户名是否已存在,如果不存在则将用户信息保存到数据库中,并跳转到用户账户列表页面。用户账户管理与用户权限和用户角色管理密切相关。
2025-07-19 13:44:30
906
4
原创 python爬取新浪财经网站上行业板块股票信息的代码
script_dir通过os.path获取脚本所在目录的绝对路径,确保所有生成的文件(CSV、日志等)统一保存至此目录,避免路径混乱。日志配置(logging.basicConfig)定义:配置日志级别(INFO)、格式(包含时间、级别、信息)、输出文件(行业板块爬取日志.log作用:记录程序运行过程(如 “页面加载成功”“解析失败”),便于调试和追踪问题(日志文件保存到脚本目录)。代码通过封装成。
2025-07-13 22:37:49
1995
4
原创 使用VMware Workstation pro 17.5.1在Windows上安装Ubuntu 24.04.2的 详细步骤
选择 ubuntu-24.04.2-desktop-amd64.iso(桌面版)或 ubuntu-24.04.2-live-server-amd64.iso(服务器版)。,用于:局域网内设备识别(如 ping ubuntu-server),SSH远程访问(如ssh user@ubuntu-server),系统日志和终端提示符显示。启动后进入 Ubuntu 安装界面 → 选择 English 或 中文(简体) → 点击 安装 Ubuntu。仅使用小写字母、数字和短横线(如 my-server-01)
2025-07-09 14:26:40
67
原创 基于 Python 的批量文件重命名软件设计与实现
对于有特殊需求的用户,可以通过编写自定义的 Python 代码来实现独特的重命名规则。自定义函数需要接收文件名和扩展名作为参数,并返回新的文件名。支持用户编写自定义的 Python 函数来实现特殊的重命名规则,函数需要接收文件名和扩展名作为参数,并返回新的文件名。操作步骤在 "自定义规则" 区域勾选复选框在代码输入框中编写自定义重命名函数预览或执行重命名示例代码# 在文件名前添加当前日期根据文件创建日期重命名根据文件大小重命名从文件名中提取特定信息重新排列问题现象。
2025-06-25 23:34:22
2276
34
原创 python的kivy框架界面布局方法详解
Kivy 是一个开源的 Python 库,用于快速开发跨平台的应用程序,支持 Windows、macOS、Linux、iOS 和 Android 等多个平台。它采用了自然用户界面(NUI)的设计理念,支持多点触控等交互方式。Kivy 的界面布局系统基于 Widget 树结构,提供了丰富的布局管理器和灵活的属性配置。BoxLayout 是Kivy 中最常用的布局管理器之一,它按照水平或垂直方向排列子 Widget。通过设置 orientation 属性,可以指定布局方向为水平('
2025-06-25 16:43:51
1039
15
原创 Python的GUI库选择指南(深度拓展)
前文我们分析了python的GUI库,有很多,面向应用场景也不尽相同,如何在使用过程中,选择合适的GUI库呢?sg.Window("标题", [[sg.Text("内容")]]).read()文档更新滞后,部分高级功能需查阅C++版WxWidgets文档。Button(root, text="点击").pack()深度定制能力较弱,复杂动画效果需手写 HTML/CSS。通过Nginx反向代理实现公网访问,需注意端口映射。动画效果有限,复杂交互需自定义原生代码。注意:避免复杂动画,优先使用轻量级组件。
2025-06-24 21:26:30
1033
16
原创 python有哪些常用的GUI(图形用户界面)库及选择指南
Python的GUI库生态系统提供了多样化的选择,从简单的标准库到功能强大的第三方框架。对于大多数情况,PyQt5 和 Tkinter 是最常用的选择,前者适合复杂应用,后者适合快速原型。随着 Web 技术的发展,Web 集成方案(如 Remi)也逐渐受到关注,成为跨平台开发的新选择。python有哪些GUI库,分别是什么,各自有什么特点和具体的应用场景,以及各个库的主要组成结构是什么?Python提供了多种 GUI(图形用户界面)库,每个库都有其独特的设计理念、适用场景和技术架构。
2025-06-24 20:46:28
1576
10
原创 基于Vue.js的图书管理系统前端界面设计的javascript逻辑部分
除了上述有关图书管理、借阅管理、用户管理的计算属性外,还定义了四个计算属性,这些计算属性基于响应式数据books、borrows和users动态计算得出新的数据,并且会根据依赖数据的变化自动更新。,相较于Vue 2的Object.defineProperty,它能更好地支持嵌套对象的响应式追踪,减少了初始化时的递归遍历开销,同时能够检测到对象属性的新增和删除,使响应式数据的处理更加高效和全面。有'dashboard'、'books'、'borrows'、'users' 等值。
2025-06-23 14:43:07
966
4
原创 Vue 3里的生命周期钩子(Lifecycle Hooks)
Vue 3提供了与Vue 2相似但语法有所不同的生命周期钩子,并且支持组合式API和选项式API两种使用方式。组件的生命周期涵盖了从创建、挂载到更新,再到销毁的整个过程,而。通过使用生命周期钩子,开发者可以更好地控制组件在不同阶段的行为,确保组件的正常运行和资源的合理利用。现在前端开发中,vue3越来越受欢迎,想要学会如何使用Vue3,就要先了解什么是周期钩子。在组件挂载到DOM之后调用,此时可以访问到真实的DOM元素。,适合在DOM更新后执行一些操作,如重新计算布局。,可用于在挂载前做最后的准备工作。
2025-06-23 14:10:46
400
2
原创 基于Vue.js的图书管理系统前端界面设计
点击“编辑”按钮调用 openUserModal方法,弹出编辑用户模态窗,点击“封禁”按钮调用 toggleUserBlock方法,弹出确认是否封禁用户的模态窗。点击“归还”按钮调用 returnBook方法,弹出确认归还图书模态窗,点击“查看详情”按钮调用 viewBorrowDetails方法,弹出该书的借阅详情和借阅历史模态窗。点击“编辑”按钮调用 openBookModal 方法,弹出编辑图书模态窗,点击“删除”按钮调用 deleteBook 方法,弹出确认删除图书模态窗。
2025-06-22 21:52:46
1584
30
原创 Python的6万张图像数据集CIFAR-10和CIFAR-100说明
(1)label_names:一个包含10个元素的列表,它为上述 labels 数组中的数字标签提供有意义的名称。每个图像都带有一个“fine”标签(它所属的类)和一个“coarse”标签(它所属的超类)。前1024个字节是红色通道值,接下来的1024个字节是绿色通道值,最后1024个字节是蓝色通道值。中,他使用贝叶斯超参数优化来找到权重衰减和其他超参数的不错设置,这使他能够在使用15%的网络架构能力的基础上,能够获得18%的测试错误率(没有数据增强)。的“行”图像,尽管没有分隔这些行的内容。
2025-06-21 23:15:25
962
24
原创 基于Python、tkinter、sqlite3 和matplotlib的校园书店管理系统
使用Python 3.x版本,建议使用最新版,当前使用的是3.12版,python官网:www.python.org。原理说明:导入所需的Python库和模块,tkinter用于创建GUI,sqlite3用于数据库操作,datetime用于处理日期时间,os用于操作系统相关操作,matplotlib用于数据可视化,configparser用于读取和写入配置文件。为了持久化配置信息,本系统使用了ini文件来存储配置信息,自然在加载程序之前,就要先加载配置信息,因此,在导入依赖包之后,就开始读取配置文件。
2025-06-21 11:30:34
1735
16
原创 一个完整的 Double Q-Learning示例(python实现)
外层循环:控制训练的总回合数(episodes)内层循环:控制每个回合内的交互步数(steps)智能体 - 环境交互:执行动作 → 接收反馈 → 更新策略数据预处理多轮实验取平均以减少随机性移动平均平滑曲线,突出趋势视觉编码颜色区分不同算法区间填充表示不确定性可读性优化清晰的标题和轴标签适当的网格线和图例此代码通过科学的可视化设计,为强化学习算法对比提供了直观的分析工具,有助于快速识别算法性能差异和稳定性特征。数据预处理确保 Q 表数值范围合理,避免极端值影响整体可视化效果。
2025-06-06 02:00:00
1257
49
原创 基于值函数的强化学习算法之Double Q-Learning详解
马尔可夫决策过程(MDP)是强化学习的数学框架,由五元组〈S, A, P, R, γ〉定义:其中S是所有可能状态的集合(状态空间),A是智能体可执行动作的集合(动作空间),P是状态转移概率函数(表示在状态s执行动作a后转移到状态s'的概率,即P(s'|s,a)),R是奖励函数(给出在状态s执行动作a并转移到状态s'后获得的即时奖励,即R(s,a,s')),γ是折扣因子(取值范围0≤γ<1,用于权衡当前奖励与未来奖励的重要性,γ越接近1表示越重视长期回报)。单元格中存储对应状态-动作对的Q值,即Q(s,a)
2025-06-06 00:00:00
1225
24
原创 将图形可视化工具的 Python 脚本打包为 Windows 应用程序
前文我们已经写了一个。在前文基础上,为了更好管理,以及便于生成exe,现将所有文件都存放桌面的GraphVisualizerApp文件夹中。
2025-06-05 09:54:04
1653
25
原创 基于Python的tkinter库的图形可视化工具(15种图形的完整代码)
前文,我们开发了一个基于Python的tkinter库的图形可视化工具,其中包括了饼图、柱状图、折线图、散点图、直方图5 种图形,然而日常中,常用的图形还有很多,接下来,我们在原有基础上进行升级,继续增加10种常用的图形。
2025-06-05 02:00:00
1180
19
原创 Python中库的安装使用过程详解
1.库的定位和用途pandas 是 Python 中用于数据处理和分析的核心库,提供了高效、灵活的数据结构(如 DataFrame 和 Series),使数据清洗、分析、可视化等任务变得更加简单。它建立在 NumPy 之上,与其他科学计算库(如 Matplotlib、SciPy)无缝集成。2.主要特性快速高效的 DataFrame 对象,支持异构数据集成时间序列功能提供灵活的数据对齐和缺失数据处理机制支持从多种数据源(CSV、Excel、SQL 数据库等)读取和写入数据。
2025-06-04 11:38:56
949
11
原创 基于Python的tkinter库开发的一个图形可视化工具(完整代码)
很多时候,我们希望有一个程序,能够直接设置不同的参数,就显示这个图形的效果,基于这样的目的,今天我们设计开发一个基于python的tkinter库的一个图形可视化程序。以下是一个实现了的界面效果:你可以运行这个程序,通过菜单选择不同的图形类型,然后在左侧设置参数,右侧就会实时显示图形效果。接下来,我们将详细讲解这个程序是如何实现的:这个图形可视化工具基于 Python 的 tkinter 和 matplotlib 库开发,提供了一个直观的界面来创建和定制不同类型的图形。
2025-06-04 03:30:00
1114
28
原创 基于Python的tkinter库开发的一个计算器(完整代码)
前文我们已经了解过,Python是可以创建GUI界面程序的。接下来,我们基于Python的tkinter库,开发一个计算器。
2025-06-03 16:13:41
1281
16
原创 基于Python的tkinter库创建图形用户界面
Tkinter 是 Python 的标准 GUI(图形用户界面)库无需额外安装即可使用。它提供了创建窗口、按钮、标签、文本框等各种界面元素的类和方法,支持事件驱动编程模式,能方便地实现用户交互功能。通过布局管理器(如 pack、grid、place),开发者可以灵活地组织界面元素,构建出美观且功能完整的应用程序。Tkinter 的组件丰富多样,涵盖了基本控件(如 Button、Label、Entry)、选择控件(如 Checkbutton、Radiobutton、Combobox)、文本控件。
2025-06-03 15:16:39
1256
12
原创 人工智能与机器学习从理论、技术与实践的多维对比
人工智能与机器学习在核心目标、知识获取方式、数学基础和应用场景等方面存在显著差异:维度人工智能(传统)机器学习核心目标模拟人类认知全流程,实现通用智能提升特定任务性能,聚焦模式识别知识获取人工定义规则和逻辑,依赖领域专家数据驱动自动学习,依赖大规模数据集数学基础离散数学、逻辑学、符号系统统计学、线性代数、优化理论系统透明度可解释(规则链追溯)黑箱(需后验解释技术)数据依赖小规模先验知识大规模标注数据(尤其是深度学习)典型应用逻辑推理、专家系统、符号规划。
2025-05-27 07:03:46
2731
71
原创 PyTorch实现CNN用于MNIST手写数字识别任务的python完整代码
数据集中的图像经过标准化处理,背景为黑色,数字前景为白色,像素值范围为0-255(通常会归一化至0-1),格式简洁且易于处理,常被用作深度学习入门的“Hello World”级示例(如CNN模型的基础测试),也是评估分类算法性能的基准数据集之一,在PyTorch、TensorFlow等框架中可直接加载调用,适合用于演示数据预处理、模型训练和推理的全流程。MNIST数据集的均值和标准差是预计算好的全局统计量。在第一次卷积操作中,输入是1通道的28×28图像,输出变为16通道的28×28特征图。
2025-05-26 23:33:34
1559
33
原创 机器学习示例之逻辑回归模型对鸢尾花进行分类的python完整代码
该数据集包含150个样本,分为3 个类别(山鸢尾Setosa、杂色鸢尾Versicolor、维吉尼亚鸢尾Virginica,各50个样本),每个样本描述了鸢尾花的4个特征:萼片长度(sepal length)、萼片宽度(sepal width)、花瓣长度(petal length)、花瓣宽度(petal width)(单位均为厘米)。训练集是用于训练回归模型的,当训练好后,用测试集进行测试,看训练出来的模型,在测试集上预测的结果与训练集中的实际结果进行比较,看是否一致,或是判断误差大小。
2025-05-26 09:37:11
1106
31
原创 人工智能示例之基于规则的专家系统(动物识别)的python完整代码
如想了解专家系统中的复杂流程,如知识表示形式的不同、知识的获取与建模、推理机制的设定、规则匹配算法、规则冲突的消解机制等,可以看上面的文章,会有详细说明。比如第一个规则是“哺乳动物 - 有毛发”,前提是“有毛发”,结论是“哺乳动物”。(2)双重循环匹配规则名称:根据触发的规则名称(rule_name),在规则库中找到对应的规则,打印其前提和结论,形成完整的推理路径。,输入用户提供的初始事实(facts)和规则库(rules),输出推理后的所有事实(包括初始事实和推导出的事实)以及触发的规则列表。
2025-05-24 13:56:19
1945
43
原创 无人机集成毫米波雷达与双目视觉的融合感知系统深度解析
提取雷达点云的速度(多普勒频移计算)、反射强度(dBm值)和视觉图像的边缘(Canny算子)、角点(ORB特征)、语义标签(YOLOv5输出)等特征,通过特征关联算法(如匈牙利算法)实现跨模态融合。:在齐次坐标系统中,3D点的变换可以用4x4矩阵表示,变换矩阵的左上角3x3是旋转矩阵,右上角3x1是平移向量,最后一行是[0, 0, 0, 1]保持齐次坐标性质。:为每个跟踪目标分配唯一ID和颜色,添加边界框显示,框大小随距离变化,显示目标轨迹(最近20个位置点),添加时间和跟踪器数量等信息显示。
2025-05-21 12:06:34
756
41
原创 Hbuilder X4.65新建vue3项目存在的问题以及解决办法
例如,`vite.config.js`如果使用了`module.exports = {...}`而不是`export default defineConfig({...})`,就会触发此错误。检查 vite.config.js 文件,打开项目根目录下的 vite.config.js,确保它导出了一个有效的配置对象。确保vite.config.js是标准的ES Module文件(ESM使用import/export语法),而不是CommonJS(require/module.exports)。
2025-05-20 17:15:16
1316
25
原创 WPS JS宏智能识别代码段并设置样式(完整可用版)
之前,我们已经经历了多次迭代,解决了许多问题,比如识别代码块、处理多行导入、调整样式等。现在他们需要一份全面的文档来解释整个代码的结构和工作原理。(5)智能行分析(含URL和注解检测优化)function analyzeLineEnhanced(rawText,trimmedText,codeSymbols,codePatterns, singleLinePatterns)该解决方案在保持高性能的同时,提供了良好的可扩展性,能够适应不同组织的代码规范需求,是WPS生态中专业文档处理的创新实践。
2025-05-19 16:28:03
945
23
原创 WPS JS宏实现去掉文档中的所有空行
这可能导致代码中的错误。但此时,如果初始段落数是5,循环i从5到1,每次处理i,而每次删除段落可能导致总段落数减少,但i是之前确定的初始值,这样当i大于当前段落数时,paras.Item(i)会出错?循环开始,i=5,处理段落5,删除后,段落数变为4。例如,原来的paras.Count是5,循环从5到1,但在处理i=5时,删除后,paras.Count变为4,下一个i是4,但原来的段落可能已经被处理过?是的,例如,当段落数变为3时,i的下一个值是3,而段落数可能已经变为3,所以i的值等于段落数,可以处理。
2025-05-17 15:35:56
1516
17
原创 WPS中代码段的识别方法及JS宏实现
这种方法需要定义多种可能的代码块标记,包括常见的Markdown、HTML和注释风格标记,使用正则表达式来查找文档中的代码块,之后再为每个识别出的代码块应用统一的样式,包括边框、背景色和等宽字体。:只要满足符号密度、缩进、长度和结构的综合条件即可识别,对注释行有特殊处理,允许代码块中有少量空行。如果现有的识别算法还不够灵活,无法准确识别你的代码。:连续2行代码即可识别为代码块,允许代码块中包含少量空行,降低了对特定关键字的依赖。:计算代码特有的符号密度,分析行首缩进模式,检查行长度分布,检测代码结构特征。
2025-05-17 01:20:23
1285
4
原创 基于策略的强化学习方法之近端策略优化(PPO)深度解析
例如,在机器人控制中,先在仿真环境中训练PPO模型,再通过域随机化(Domain Randomization)迁移到真实环境。理论上,当ϵ较小时,PPO的截断操作近似于TRPO的信任区域约束,但计算复杂度显著降低。(因策略更新需保证数据来自相近策略),而是将每个周期收集的轨迹分割为多个小批量(Mini-Batch),在每个小批量上进行多次更新,以模拟SGD的效果,减少内存占用。替代TRPO的信任区域约束,约束新旧策略之间的差异,避免策略突变,既保持了策略更新的稳定性,又显著降低了计算成本。
2025-05-15 19:14:21
1339
20
原创 基于策略的强化学习方法之策略梯度(Policy Gradient)详解
我们需要找到∇θ J(θ),即目标函数J(θ)对θ的梯度,然后用梯度上升法更新θ。具体来说,对于期望E_{x~p(x)} [f(x)],其梯度∇θ可以写成E_{x~p(x)} [f(x) ∇θ log p(x)],这里假设p(x)依赖于θ。其中:p(s0)是初始状态分布,πθ(at|st)是策略选择的动作概率,p(st+1|st,at)是环境的状态转移概率。期望回报的梯度∇θ J(θ)应该等于轨迹τ的回报乘以该轨迹概率的对数梯度,再取期望。由于期望是在策略πθ下计算的,而策略本身依赖于θ,所以需要使用。
2025-05-14 23:57:45
1442
10
原创 Huffman树
假设用于通讯电文仅有8个字母A、B、C、D、E、F、G组成,字母在电文出现的频率分别为:0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10。接下来在从选择森林中继续选择两颗权值最小的树,以它们为叶子,构建一个新树,树的根的权值为两棵树的权值只和。创建哈夫曼树的算法实现,在构造哈夫曼树的过程中,我们是每次都是取森林中的具有最小权值的结点,为了更好的实现,所以第一步,我们应该。选择森林中的权值最小的两棵树,以它们为叶子,构建一个新树,树的根的权值为两棵树的权值只和。
2025-05-14 17:30:18
889
12
原创 抗量子计算攻击的数据安全体系构建:从理论突破到工程实践
美国西北大学工程师利用现有互联网光缆演示量子隐形传态,在30公里长的光缆上与高速互联网信号同时传输量子信息,证明量子通信和经典通信可共存,为构建更复杂、高效的量子信息系统提供了技术支持,也为长距离量子连接的实现开辟了新路径。美国国家标准与技术研究所(NIST)的加密算法验证程序,严格评估筛选各类抗量子密码算法,促使全球科研力量积极优化改进算法,有力推动了抗量子密码技术合规性与实用性的发展,并于8月正式发布了全球首批抗量子密码标准。实验显示,添加水印的PDF文件大小增加<0.5%,解码延迟<1ms。
2025-05-13 22:56:32
991
6
原创 “端 - 边 - 云”三级智能协同平台的理论建构与技术实现
在广西 - 东盟跨境物流中,无人机需在城市建筑群中执行“仓储中心 - 配送点”任务,面临动态气象干扰(如突发雷暴)、空域管制(如临时禁飞区)、多模态资源协同(仓储机器人、运输车辆)等挑战。边缘层(FPGA):部署轻量化策略网络(Actor),处理实时状态输入(如无人机位置、电池状态),输出即时动作(路径调整、任务切换),延迟< 5ms。:在云制造场景中,三级平台实现设备端(工业机器人)、车间边缘(PLC控制器)、云端(制造执行系统)的协同,通过时空耦合模型优化工序调度,生产周期缩短20%;
2025-05-13 22:45:47
785
6
原创 时空注意力机制深度解析:理论、技术与应用全景
本文从理论起源、数学建模、网络架构、工程实现到行业应用,系统拆解时空注意力机制的核心原理,涵盖基础理论推导、改进模型分析、分布式训练技术及多领域实践案例,为复杂时空系统的建模提供完整技术路线。未来,随着理论的完善和技术的融合,时空注意力机制将在自动驾驶、智慧城市、气象预测等领域发挥更大作用,推动人工智能从感知智能向决策智能迈进。在机器学习中,自注意力机制通过计算输入数据与模型内部组件的相似度,来决定哪些信息对当前任务更重要。,计算注意力汇聚汇聚的输出计算成为值的加权和,其中a表示注意力评分函数。
2025-05-12 23:44:37
1955
24
原创 生成对抗网络(GAN)深度解析:理论、技术与应用全景
从理论推导到工程实现,GAN的发展印证了深度学习中“对抗训练”范式的有效性——通过构建竞争机制,模型能够学习到更复杂、更真实的数据分布。(Discriminator)负责判断输入的数据是真实的还是生成的,目的是找出生成器做的“假数据”。本文从理论起源、数学建模、网络架构、工程实现到行业应用,系统拆解GAN的核心机制,涵盖基础理论推导、改进模型分析、评估指标设计及多领域实践案例,为复杂分布建模提供完整技术路线。之后将D(x)和D(G(z))都输入到判别模型(D)中,进行判别,判断是否是真是的数据。
2025-05-12 21:37:35
2648
1
原创 长短期记忆网络(LSTM)深度解析:理论、技术与应用全景
本文从理论起源、数学建模、网络架构、工程实现到行业应用,系统拆解LSTM的核心机制,涵盖基础理论推导、改进模型分析、分布式训练技术及多领域实践案例,为复杂时序系统的建模提供完整技术路线。通过共享权重处理序列数据,但反向传播时梯度呈现指数级衰减(或爆炸),导致对长距离依赖(如超过20步的时序)建模能力失效,即梯度消失问题。从连续语音信号中检测语音段起始与结束位置,输入为梅尔频率倒谱系数(MFCC,40维),输出为二分类(语音/非语音)。
2025-05-11 00:05:59
2198
6
原创 软件工程之软件项目管理深度解析
E = 5.2×(5.66)^{0.91} = 5.2×4.87 = 25.3 人月 D = 4.1×(5.66)^{0.36} = 4.1×1.98 = 8.1 月 S = 0.3×(25.3)^{0.33}0.3×2.93 = 0.88 → 1 人(需调整)需求分析(A, 20天)→ 2. 架构设计(B, 15天)→ 3. 编码(C, 30天) ↘ 4. 数据库设计(D, 10天)→ ↗ 5. 测试(E, 15天)注:系数为复杂度权重(简单 = 3,平均 = 4,复杂 = 6,此处取平均)
2025-05-10 00:15:00
2050
6
原创 软件工程之面向对象分析深度解析
例如,在线购物系统中的“用户”“商品”“订单”等类,以及它们之间的关联(如“用户下单”“订单包含商品”)。例如,在线购物系统中的候选类包括“用户”“商品”“购物车”“订单”“支付”等。例如,订单的状态从“已提交”变为“已支付”再到“已发货”,需通过状态图明确触发状态转换的事件(如“用户支付”“仓库发货”)。例如,初始模型中“订单”和“支付”是独立类,后续发现“支付”可作为“订单”的一个状态,从而合并为“订单”类的属性或子状态。,如“用户”类的“登录”“注册”,“订单”类的“提交”“取消”。
2025-05-10 00:00:00
1018
4
原创 软件工程之详细设计深度解析
详细设计阶段的根本目标是确定应该怎样具体地实现所要求的系统,即得出对目标系统的精确描述,从而在编码阶段可以把这个描述直接翻译成用某种程序语言书写的程序。(2)程序词汇量:n = n_1 + n_2,其中n_1为唯一操作符数,n_2为唯一操作数。(1)程序长度:N = N_1 + N_2,其中N_1为操作符总数,N_2为操作数总数。操作符:=, +=, <=, ++, return(共 5 种,n_1=5)。操作符总数:N_1=5(=, *=, <=, ++, return)。
2025-05-09 03:45:00
930
4
非凸优化算法的测试函数Easom函数(Easom function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Michalewicz函数(Michalewicz function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Levy函数(Levy function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Three-hump camel函数(Three-hump camel function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Schwefel函数(Schwefel function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Ackley函数(Ackleyfunction)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Griewank函数(Griewank function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Cross-in-Tray函数(Cross-in-Tray function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Rastrigin函数(Rastrigin function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Rosenbrock函数(Rosenbrock's function)的Python代码,实现3D效果
2024-12-19
vue3实现自定义导航菜单的案例代码
2024-11-28
Vue 3中实现多个自定义组件之间的切换的案例代码
2024-11-27
vue2自定义注册和登录组件并实现在页面中切换的案例代码
2024-11-27
本科毕业论文格式自动排版工具
2024-11-19
基于Python、tkinter、sqlite3 和matplotlib的校园书店管理系统
2025-06-21
一个完整的 Double Q-Learning示例(python实现)
2025-06-05
将图形可视化工具的 Python 脚本打包为 Windows 应用程序
2025-06-05
基于Python的tkinter库的图形可视化工具(15种图形的完整代码)
2025-06-04
基于Python的tkinter库开发的一个图形可视化工具(完整代码)
2025-06-03
从零开始构建一个小型字符级语言模型的完整python示例代码
2025-02-20
DeepSeek-R1-Distill-Qwen-1.5B-Q8-0.gguf(第一部分)
2025-02-14
DeepSeek-R1-Distill-Qwen-1.5B-Q8-0.gguf(第二部分)
2025-02-14
DeepSeek基于DeepSeek-R1-1.5B.gguf的RAG微调项目完整文件包(第一部分)
2025-02-11
DeepSeek基于DeepSeek-R1-1.5B.gguf的RAG微调项目完整文件包(第二部分)
2025-02-11
DeepSeek基于DeepSeek-R1-1.5B.gguf的RAG微调项目完整文件包(第三部分)
2025-02-11
Visual Studio Build Tools之vs-BuildTools-2025.2.9.exe
2025-02-09
Git-2.47.1.2-64-bit-2025.2.9.exe
2025-02-09
cmake-3.31.5-windows-x86-64-2025.2.9.msi
2025-02-09
DeepSeek大模型的DeepSeek-R1-Distill-Qwen-1.5B-GGUF版本,2025.2.6最新版的安装包OllamaSetup.exe
2025-02-07
非凸优化算法的测试函数Goldstein-Price函数(Goldstein-Price function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Eggholder函数(Eggholder function)的Python代码,实现3D效果
2024-12-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人