Pandas系列学习教程——03 pandas数据查询

本文详细介绍了Pandas库中数据查询的四种方法:loc、iloc、df.query以及使用条件和函数进行数据筛选。通过实例演示了如何按标签、位置、数值区间、条件和自定义函数进行数据选取,为初学者提供pandas数据分析基础入门教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录


第一章 Pandas 学习入门之pandas数据读取

第二章 Pandas 学习入门之pandas数据结构

第三章 Pandas 学习入门之pandas数据查询


随着人工智能的不断发展,数据分析这门技术也越来越重要,很多人都开启了学习数据分析,本文就介绍了pandas学习的基础内容。本章讲解的是Pandas系列学习教程中的第三章——pandas数据查询,主要介绍按数值、列表、区间、条件和函数方法进行查询。

系列文章目录

前言

一、pandas查询数据的四种方法

二、使用df.loc查询数据的方法

注意 

0、引入库 & 读取数据

1、使用单个label值查询数据

2、使用值列表批量查询

3、使用数值区间进行范围查询

4、使用条件表达式查询

4.1 简单条件查询,最低温度低于-10度的列表

4.2 复杂条件查询,查一下我心中的完美天气

5、调用函数查询

总结


前言

本章讲解的是Pandas系列学习教程中的第三章——pandas数据查询,主要介绍按数值、列表、区间、条件和函数方法进行查询。


提示:以下是本篇文章正文内容,下面案例可供参考

一、pandas查询数据的四种方法

  1. df.loc方法,根据行、列的标签值查询
  2. df.iloc方法,根据行、列的数字位置查询
  3. df.where方法
  4. df.query方法

.loc既能查询,又能覆盖写入,强烈推荐! 

二、使用df.loc查询数据的方法

  1. 使用单个label值查询数据
  2. 使用值列表批量查询
  3. 使用数值区间进行范围查询
  4. 使用条件表达式查询
  5. 调用函数查询

注意 

  • 以上查询方法,既适用于行,也适用于列
  • 注意观察降维dataFrame>Series>值

0、引入库 & 读取数据

代码如下(示例):

import pandas as pd
print(pd.__version__)
2.0.3

 数据来源为北京2018年全年天气预报。需要数据可以私信我!!

#使用pd.read_csv(fpath)读取数据
shijian = pd.read_csv(
    "./beijing_tianqi_2018.txt",
    sep = "\t",
    header = None,
    names = ['ymd','bWendu','yWendu','tianqi','fengxiang','fengli','aqi','aqiInfo','aqiLevel']
)
df.head()

# 设定索引为日期,方便按日期筛选
df.set_index('ymd', inplace=True)
df

inplace=True:指定这个操作是否在原地修改DataFrame。将这个参数设置为True意味着原来的DataFramedf会被直接修改,而不是创建一个新的DataFrame作为修改的结果返回。如果设置为False(默认值),则不会修改原始DataFrame,而是返回一个新的DataFrame,其索引已经被设置为指定的列。

# 替换掉温度的后缀℃
df.loc[:, "bWendu"] = df["bWendu"].str.replace("℃
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值