系列文章目录
第一章 Pandas 学习入门之pandas数据读取
第二章 Pandas 学习入门之pandas数据结构
第三章 Pandas 学习入门之pandas数据查询
随着人工智能的不断发展,数据分析这门技术也越来越重要,很多人都开启了学习数据分析,本文就介绍了pandas学习的基础内容。本章讲解的是Pandas系列学习教程中的第三章——pandas数据查询,主要介绍按数值、列表、区间、条件和函数方法进行查询。
前言
本章讲解的是Pandas系列学习教程中的第三章——pandas数据查询,主要介绍按数值、列表、区间、条件和函数方法进行查询。
提示:以下是本篇文章正文内容,下面案例可供参考
一、pandas查询数据的四种方法
- df.loc方法,根据行、列的标签值查询
- df.iloc方法,根据行、列的数字位置查询
- df.where方法
- df.query方法
.loc既能查询,又能覆盖写入,强烈推荐!
二、使用df.loc查询数据的方法
- 使用单个label值查询数据
- 使用值列表批量查询
- 使用数值区间进行范围查询
- 使用条件表达式查询
- 调用函数查询
注意
- 以上查询方法,既适用于行,也适用于列
- 注意观察降维dataFrame>Series>值
0、引入库 & 读取数据
代码如下(示例):
import pandas as pd
print(pd.__version__)
2.0.3
数据来源为北京2018年全年天气预报。需要数据可以私信我!!
#使用pd.read_csv(fpath)读取数据
shijian = pd.read_csv(
"./beijing_tianqi_2018.txt",
sep = "\t",
header = None,
names = ['ymd','bWendu','yWendu','tianqi','fengxiang','fengli','aqi','aqiInfo','aqiLevel']
)
df.head()
# 设定索引为日期,方便按日期筛选
df.set_index('ymd', inplace=True)
df
inplace=True:指定这个操作是否在原地修改DataFrame。将这个参数设置为True意味着原来的DataFramedf会被直接修改,而不是创建一个新的DataFrame作为修改的结果返回。如果设置为False(默认值),则不会修改原始DataFrame,而是返回一个新的DataFrame,其索引已经被设置为指定的列。
# 替换掉温度的后缀℃
df.loc[:, "bWendu"] = df["bWendu"].str.replace("℃