计算直接去模糊
1、https://blog.csdn.net/celerychen2009/article/details/9857349
一种极快速去模糊效应图像细节增强及其应用,简单快速,不需要一个专门的模型进行模糊图像的处理
笔者的算法思路其实比较简单,如果对PS比较了解,应该会知道PS有锐化这个功能,比较实用的例如USM锐化。如何得到图像的细节,典型的可以采用高通滤波。笔者在得到图像的细节之后,专门针对图像的细节做了一些预处理,然后把图像的细节和原始图像叠加在一起。有时候,思路越简单,方法越有效。
神经网络方法 2017 2018 2019 cvpr
2、https://blog.csdn.net/zseqsc_asd/article/details/86308144
基于深度网络的去模糊算法,图像局部进行放大
2017 CVPR Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring 原文链接:https://arxiv.org/pdf/1612.02177.pdf
2018CVPR DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks 原文链接:https://arxiv.org/pdf/1711.07064.pdf
3、CVPR2019 Unsupervised Domain-Specific Deblurring via Disentangled Representations 一文进行分析,梳理一下基于深度神经网络下图像去模糊的实现方法。
4、https://zhuanlan.zhihu.com/p/54198784
FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors 是CVPR2018的文章(spotlight)
4、https://www.cnblogs.com/smartweed/p/10444039.html Learning Deep CNN Denoiser Prior for Image Restoration阅读笔记
去噪去模糊超分辨重建,,https://arxiv.org/pdf/1704.03264.pdf
5、基于深度学习的Image Inpainting (图像修复)论文总结
https://www.jianshu.com/p/038f5488663d
SC-FEGAN: Face Editing Generative Adversarial Network with User’s Sketchand Color,图像擦除修复,