图像去模糊,超分辨,相关信息

本文探讨了多种图像去模糊技术,包括基于高通滤波的简单快速方法、基于深度学习的去模糊算法,如2017至2019年CVPR上提出的深度多尺度卷积神经网络、DeblurGAN及无监督域特定去模糊等。同时,介绍了基于神经网络的图像修复、超分辨重建和去噪技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算直接去模糊

1、https://blog.csdn.net/celerychen2009/article/details/9857349
一种极快速去模糊效应图像细节增强及其应用,简单快速,不需要一个专门的模型进行模糊图像的处理

笔者的算法思路其实比较简单,如果对PS比较了解,应该会知道PS有锐化这个功能,比较实用的例如USM锐化。如何得到图像的细节,典型的可以采用高通滤波。笔者在得到图像的细节之后,专门针对图像的细节做了一些预处理,然后把图像的细节和原始图像叠加在一起。有时候,思路越简单,方法越有效。

神经网络方法 2017 2018 2019 cvpr

2、https://blog.csdn.net/zseqsc_asd/article/details/86308144
基于深度网络的去模糊算法,图像局部进行放大
2017 CVPR Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring 原文链接:https://arxiv.org/pdf/1612.02177.pdf
在这里插入图片描述2018CVPR DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks 原文链接:https://arxiv.org/pdf/1711.07064.pdf
在这里插入图片描述3、CVPR2019 Unsupervised Domain-Specific Deblurring via Disentangled Representations 一文进行分析,梳理一下基于深度神经网络下图像去模糊的实现方法。
在这里插入图片描述4、https://zhuanlan.zhihu.com/p/54198784
FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors 是CVPR2018的文章(spotlight)
在这里插入图片描述4、https://www.cnblogs.com/smartweed/p/10444039.html Learning Deep CNN Denoiser Prior for Image Restoration阅读笔记
去噪去模糊超分辨重建,,https://arxiv.org/pdf/1704.03264.pdf

5、基于深度学习的Image Inpainting (图像修复)论文总结
https://www.jianshu.com/p/038f5488663d

SC-FEGAN: Face Editing Generative Adversarial Network with User’s Sketchand Color,图像擦除修复,
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值