Spark 系列(一)—— Spark简介

一、简介

Spark 于 2009 年诞生于加州大学伯克利分校 AMPLab,2013 年被捐赠给 Apache 软件基金会,2014 年 2 月成为 Apache 的顶级项目。相对于 MapReduce 的批处理计算,Spark 可以带来上百倍的性能提升,因此它成为继 MapReduce 之后,最为广泛使用的分布式计算框架。

二、特点

Apache Spark 具有以下特点:

  • 使用先进的 DAG 调度程序,查询优化器和物理执行引擎,以实现性能上的保证;
  • 多语言支持,目前支持的有 Java,Scala,Python 和 R;
  • 提供了 80 多个高级 API,可以轻松地构建应用程序;
  • 支持批处理,流处理和复杂的业务分析;
  • 丰富的类库支持:包括 SQL,MLlib,GraphX 和 Spark Streaming 等库,并且可以将它们无缝地进行组合;
  • 丰富的部署模式:支持本地模式和自带的集群模式,也支持在 Hadoop,Mesos,Kubernetes 上运行;
  • 多数据源支持:支持访问 HDFS,Alluxio,Cassandra,HBase,Hive 以及数百个其他数据源中的数据。

https://github.com/heibaiying

三、集群架构

Term(术语) Meaning(含义)
Application Spark 应用程序,由集群上的一个 Driver 节点和多个 Executor 节点组
spark streaming 是基于 spark 引擎的实时数据处理框架,可以通过集成 kafka 来进行数据流的处理。然而,在使用 spark streaming 进行 kafka 数据流处理时,可能会遇到些坑。 首先,要注意 spark streaming 和 kafka 版本的兼容性。不同版本的 spark streaming 和 kafka 可能存在些不兼容的问题,所以在选择版本时要特别留意。建议使用相同版本的 spark streaming 和 kafka,以避免兼容性问题。 其次,要注意 spark streaming 的并行度设置。默认情况下,spark streaming 的并行度是根据 kafka 分区数来决定的,可以通过设置 spark streaming 的参数来调整并行度。如果并行度设置得过高,可能会导致任务处理过慢,甚至出现 OOM 的情况;而设置得过低,则可能无法充分利用集群资源。因此,需要根据实际情况进行合理的并行度设置。 另外,要注意 spark streaming 和 kafka 的性能调优。可以通过调整 spark streaming 缓冲区的大小、批处理时间间隔、kafka 的参数等来提高性能。同时,还可以使用 spark streaming 的 checkpoint 机制来保证数据的致性和容错性。但是,使用 checkpoint 机制可能会对性能产生定的影响,所以需要权衡利弊。 最后,要注意处理 kafka 的消息丢失和重复消费的问题。由于网络或其他原因,可能会导致 kafka 的消息丢失;而 spark streaming 在处理数据时可能会出现重试导致消息重复消费的情况。可以通过配置合适的参数来解决这些问题,例如设置 KafkaUtils.createDirectStream 方法的参数 enable.auto.commit,并设置适当的自动提交间隔。 总之,在使用 spark streaming 进行 kafka 数据流处理时,需要留意版本兼容性、并行度设置、性能调优和消息丢失重复消费等问题,以免踩坑。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值