
keras
文章平均质量分 76
主要介绍keras中常见函数的使用
a flying bird
永远飞翔的鸟
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Keras入门日志(3)】Keras中的序贯(Sequential)模型与函数式(Functional)模型
【Keras入门日志(3)】Keras中的序贯(Sequential)模型与函数式(Functional)模型原创 2022-07-23 11:11:52 · 319 阅读 · 0 评论 -
keras学习之:获取神经网络中间层的输出结果
keras学习之:获取神经网络中间层的输出结果原创 2022-07-23 10:36:20 · 527 阅读 · 0 评论 -
Keras打印tensor的值以及学习率
Keras打印tensor的值以及学习率原创 2022-07-22 22:13:25 · 1023 阅读 · 1 评论 -
BERT学习笔记和实战文本分类
一、阅读记录(九)再谈embedding——bert详解(实战)上https://www.jianshu.com/p/109505d2947a(九)再谈embedding——bert详解(实战)中https://www.jianshu.com/p/261311adce89(九)再谈embedding——bert详解(实战)下https://www.jianshu.com/p......原创 2019-11-08 15:49:04 · 1840 阅读 · 1 评论 -
Keras实现自定义层
Keras是一个高度封装的库,它的优点是可以进行快速的建模,缺点是它不处理底层运算,如张量内积等。为了弥补这个问题,Keras提供“后端引擎”来实现底层运算操作。目前Keras支持的后端引擎有tensorflow,CNTK,Theano。默认的是使用tensorflow,你可以在.keras/keras.json文件中更改backend。我们可以使用keras提供的后端来实现任意你想实现的laye...原创 2018-09-17 23:00:11 · 7796 阅读 · 0 评论 -
keras 模型参数,模型保存,中间结果输出和预测
例程1获取中间某一层的权重和偏置,并打印from keras.models import Sequential,Modelfrom keras.layers import Denseimport numpy as npmodel = Sequential()model.add(Dense(32,activation="relu",input_dim=100))model.add(...原创 2018-09-13 22:20:52 · 4577 阅读 · 0 评论 -
keras中自定义 loss损失函数和修改不同样本的loss权重(样本权重、类别权重)
首先辨析一下概念:1. loss是整体网络进行优化的目标, 是需要参与到优化运算,更新权值W的过程的2. metric只是作为评价网络表现的一种“指标”, 比如accuracy,是为了直观地了解算法的效果,充当view的作用,并不参与到优化过程一、keras自定义损失函数在keras中实现自定义loss, 可以有两种方式,一种自定义 loss function, 例如:# 方式...原创 2018-09-08 07:41:43 · 12175 阅读 · 2 评论 -
keras之多输入多输出(多任务)模型
keras多输入多输出模型,以keras官网的demo为例,分析keras多输入多输出的适用。主要输入(main_input): 新闻标题本身,即一系列词语。辅助输入(aux_input): 接受额外的数据,例如新闻标题的发布时间等。该模型将通过两个损失函数进行监督学习。较早地在模型中使用主损失函数,是深度学习模型的一个良好正则方法。完整过程图示如下:其中,红圈中的操作为将辅助数据...原创 2018-07-10 16:41:06 · 3307 阅读 · 1 评论 -
Keras框架简介和使用流程
目录一、 Keras框架简介1. Models包:keras.models2. Layers包:keras.layers3. Initializations包:keras.initializations4. Activations包:keras.activations、keras.layers.advanced_activations(新激活函数)5. Objecti...原创 2018-07-04 17:10:23 · 1493 阅读 · 0 评论