Paper1——Deep Semantic Segmentation of Natural and Medical Images: A Review
1.医学图像处理经常遇到的问题
1.1.医学图像数据规模小
解决方法:GAN进行数据扩增
1.2.像素级注释,麻烦,代价高
解决方法:引入弱监督学习
1.3.医学图像的成像方式太多(eg.CT、MR …)
使用非医学图像进行预训练
引入多任务训练方法
2.医学图像处理算法的5种优化方向
2.1.网络模型结构的改进
FCN系列、U-Net系列、DeepLabv系列
Encoder Decoder结构、 Attention model、 Adversarial Training 、Sequence
原创
2020-10-15 16:12:56 ·
321 阅读 ·
0 评论