yolov7算法及其改进

1、YOLOV7简介

在这里插入图片描述
1、模型层面:

  • 提出了扩展高效的层聚合网络(E-ELAN)
  • 基于级联的模型缩放方法
  • 基于MP的降维组件

2、训练Trick:

  • 卷积重参化
  • Batch normalization
  • YOLOR中的隐式知识结合卷积特征映射和乘法方式

3、标签分配:

  • 无辅助头:同YOLOv5
  • 有辅助头:辅助头匹配进行正样本的扩充

2、ELAN架构设计

当今主流的网络设计策略大多基于数据路径设计网络架构。ELAN设计了基于梯度路径的网络设计策略。提出了Layer-level、Stage-level和Network-level的梯度路径设计策略,
1、Layer-level:在这个层次上设计了梯度分流策略。调整层数并计算残差连接的通道比率,然后设计Partial Residual Network(PRN)。
2、Stage-level:添加硬件特征以加快网络推理。最大化梯度组合,同时最小化硬件计算成本,因此设计了Cross Stage Partial Network(CSPNet)。
3、Network-leve

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值