yolov7算法及其改进
1、YOLOV7简介
1、模型层面:
- 提出了扩展高效的层聚合网络(E-ELAN)
- 基于级联的模型缩放方法
- 基于MP的降维组件
2、训练Trick:
- 卷积重参化
- Batch normalization
- YOLOR中的隐式知识结合卷积特征映射和乘法方式
3、标签分配:
- 无辅助头:同YOLOv5
- 有辅助头:辅助头匹配进行正样本的扩充
2、ELAN架构设计
当今主流的网络设计策略大多基于数据路径设计网络架构。ELAN设计了基于梯度路径的网络设计策略。提出了Layer-level、Stage-level和Network-level的梯度路径设计策略,
1、Layer-level:在这个层次上设计了梯度分流策略。调整层数并计算残差连接的通道比率,然后设计Partial Residual Network(PRN)。
2、Stage-level:添加硬件特征以加快网络推理。最大化梯度组合,同时最小化硬件计算成本,因此设计了Cross Stage Partial Network(CSPNet)。
3、Network-leve