【AI Guide】AI面试攻略只用看这一篇就够了!力争做全网最全的AI面试攻略——大模型(四十三) Megatron-DeepSpeed 和 Megatron-LM
Megatron-DeepSpeed 和 Megatron-LM
Megatron-DeepSpeed 和 Megatron-LM 是两个用于训练大规模预训练语言模型(如GPT-3、BERT等)的重要框架和技术。它们都旨在解决训练大规模深度学习模型时的显存和计算瓶颈问题,但在设计目标、架构和实现细节上有所不同。下面我将详细介绍这两个框架的核心概念和差异。
Megatron-LM
Megatron-LM 是由 NVIDIA 开发的一个用于训练超大规模语言模型的框架。其主要目标是通过高度优化的并行计算架构,显著提高大规模预训练语言模型的训练效率。Megatron-LM 最早用于训练 GPT-2 类似的 Transformer 模型,但它已经扩展到支持更大规模的模型,如 GPT-3。
核心原理
- 模型并行: Megatron-LM 使用模型并行(Model Parallelism)将大型模型分布到多个 GPU 上,这对于模型无法完全放入单个 GPU 的情况非常重要。Megatron-LM 使用了基于数据并行(Data Parallelism)的扩展,可以将模型参数分割成多个块,分配到不同的设备上进行计算。
- Pipeline Parallelism: 除了常见的 数据并行 和 模型并行,Megatron-LM 还采用了流水线并行(Pipeline Parallelism)来进一步提高