短时傅里叶变换(STFT)原理
短时傅里叶变换(Short-Time Fourier Transform, STFT)是一种分析时变信号频率特性的方法。它通过将长时间的信号分割成较短的时间片段,然后对每个时间片段进行傅里叶变换,从而克服了传统傅里叶变换无法同时提供时间和频率信息的限制。
原理
-
分割信号:STFT首先将连续的信号分割成较短的时间片段。这通常通过乘以一个滑动窗口函数来实现,窗口函数在特定的时间区间内非零,并随着时间滑动。
-
窗口函数:窗口函数的选择对STFT的结果有重要影响。常用的窗口函数包括矩形窗、汉宁窗、汉明窗等。窗口函数的宽度(或称为窗口长度)决定了时间分辨率和频率分辨率的平衡:窗口越宽,频率分辨率越高,时间分辨率越低;窗口越窄,时间分辨率越高,频率分辨率越低。
-
傅里叶变换:对每个时间片段应用傅里叶变换,计算该时间片段内信号的频率成分。这样,每个时间片段都对应一个频谱。
-
时间-频率表示:将所有时间片段的傅里叶变换结果组合起来,就可以得到信号的时间-频率表示,即STFT的结果。这个结果通常表示为一个二维数组,其中一个维度表示时间,另一个维度表示频率。
数学表达式
STFT的数学表达式为:
STFT{
x(t)}(τ,ω)=∫−∞+∞x(t)⋅w(t−τ)⋅e−jωtdtSTFT\{x(t)\}(τ, ω) = \int_{-\infty}^{+\infty} x(t) \cdot w(t-τ) \cdot e^{-jωt} dt STFT{
x(t)}(τ,ω)=∫−∞+∞x(t)⋅w(t−τ)⋅e−jωt