🍟 比赛简介
在本次竞赛中,我们需要根据地震全波形数据估算地下介质属性——例如速度模型。这个过程称为全波形反演(Full Waveform Inversion,FWI),有望显著提升地震分析的精度与效率,使其在各类领域中更具价值。
想象一位医生分析超声波图像——不仅仅看到模糊的轮廓,而是获得清晰、细致的成像,以便精准诊断。地球物理学家在成像地球深处未知结构时,面临的正是类似的挑战。地表之下蕴藏着重要资源、潜在风险以及揭示地球历史的线索——要充分理解和有效利用它们,都离不开更清晰、更精确的地下成像。
FWI 是揭示这些秘密的关键。该技术对于能源勘探、碳储存、医学超声和先进材料检测等领域至关重要,通过分析地震波的完整波形来构建地下精细模型。但在嘈杂现实的干扰下,现有方法往往力不从心。
传统的基于物理的算法虽然精确,却极其耗时,并且在弱信号或噪声较大的情况下易出错。纯粹的机器学习方法速度更快,但需要大量标注数据,且常在遇到全新或陌生信号时泛化能力不足。
本次竞赛旨在通过融合物理与机器学习,推动 FWI 的发展,弥合两者之间的鸿沟。若能取得成功,不仅可革新地下能源勘探,还将惠及医学诊断、无损材料检测等众多需要高精度成像的领域。