自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(940)
  • 收藏
  • 关注

原创 YoloV8改进策略:Loss改进|GWD Loss|旋转目标改进|基于高斯瓦瑟斯坦距离损失函数重新思考旋转目标检测

论文精辟地总结了旋转目标检测面临的三大挑战:📏 指标与损失不一致性🌀 边界不连续性⬜ 类矩形问题https://arxiv.org/pdf/2101.11952边界不连续性及其与最终检测指标的不一致性,一直是旋转检测回归损失设计的瓶颈。在本文中,我们提出了一种基于高斯 Wasserstein 距离的新型回归损失,作为解决该问题的基本方法。具体而言,将旋转边界框转换为二维高斯分布,这样就能够利用可通过梯度反向传播高效学习的高斯 Wasserstein 距离(GWD)来近似不可微分的旋转交并比(IoU)诱

2025-06-29 21:10:15 39

原创 YoloV11改进策略:Loss改进|GWD Loss|旋转目标改进|基于高斯瓦瑟斯坦距离损失函数重新思考旋转目标检测

边界不连续性及其与最终检测指标的不一致性,一直是旋转检测回归损失设计的瓶颈。在本文中,我们提出了一种基于高斯 Wasserstein 距离的新型回归损失,作为解决该问题的基本方法。具体而言,将旋转边界框转换为二维高斯分布,这样就能够利用可通过梯度反向传播高效学习的高斯 Wasserstein 距离(GWD)来近似不可微分的旋转交并比(IoU)诱导损失。即使两个旋转边界框之间没有重叠(这在小目标检测中很常见),GWD 仍能为学习提供有效信息。

2025-06-29 12:55:37 190

原创 YoloV12改进策略:Loss改进|GWD Loss|旋转目标改进|基于高斯瓦瑟斯坦距离损失函数重新思考旋转目标检测

论文精辟地总结了旋转目标检测面临的三大挑战:📏 指标与损失不一致性🌀 边界不连续性⬜ 类矩形问题https://arxiv.org/pdf/2101.11952边界不连续性及其与最终检测指标的不一致性,一直是旋转检测回归损失设计的瓶颈。在本文中,我们提出了一种基于高斯 Wasserstein 距离的新型回归损失,作为解决该问题的基本方法。具体而言,将旋转边界框转换为二维高斯分布,这样就能够利用可通过梯度反向传播高效学习的高斯 Wasserstein 距离(GWD)来近似不可微分的旋转交并比(IoU)诱

2025-06-29 11:47:34 271

原创 YoloV12改进策略:Loss改进|GWD Loss|基于高斯瓦瑟斯坦距离损失函数重新思考旋转目标检测

边界不连续性及其与最终检测指标的不一致性,一直是旋转检测回归损失设计的瓶颈。在本文中,我们提出了一种基于高斯 Wasserstein 距离的新型回归损失,作为解决该问题的基本方法。具体而言,将旋转边界框转换为二维高斯分布,这样就能够利用可通过梯度反向传播高效学习的高斯 Wasserstein 距离(GWD)来近似不可微分的旋转交并比(IoU)诱导损失。即使两个旋转边界框之间没有重叠(这在小目标检测中很常见),GWD 仍能为学习提供有效信息。

2025-06-29 09:24:22 30

原创 【大模型实战】微调Qwen2.5 VL模型,增强目标检测任务。

图像处理:将图像调整为固定尺寸坐标转换:同步调整边界框坐标格式转换:生成Qwen2.5-VL兼容的JSONL格式错误处理:记录处理失败的文件。

2025-06-25 13:28:49 327

原创 【大模型问题】ms-swift微调时,显存持续增长原因分析与解决方案

-dtype。

2025-06-24 13:21:31 64

原创 【大模型实战】于Qwen2.5-VL模型的出租车自动标注解决方案

本文将介绍一种利用Qwen2.5-VL多模态大模型实现出租车自动标注的创新方法。该方案通过自然语言指令引导模型识别图像中的出租车,并生成标准化的Labelme格式标注文件。

2025-06-24 13:19:28 165

原创 YoloV11改进策略:Loss改进|GWD Loss|基于高斯瓦瑟斯坦距离损失函数重新思考旋转目标检测

边界不连续性及其与最终检测指标的不一致性,一直是旋转检测回归损失设计的瓶颈。在本文中,我们提出了一种基于高斯 Wasserstein 距离的新型回归损失,作为解决该问题的基本方法。具体而言,将旋转边界框转换为二维高斯分布,这样就能够利用可通过梯度反向传播高效学习的高斯 Wasserstein 距离(GWD)来近似不可微分的旋转交并比(IoU)诱导损失。即使两个旋转边界框之间没有重叠(这在小目标检测中很常见),GWD 仍能为学习提供有效信息。

2025-06-22 05:51:52 106 3

原创 YoloV8改进策略:Loss改进|GWD Loss|基于高斯瓦瑟斯坦距离损失函数重新思考旋转目标检测

论文精辟地总结了旋转目标检测面临的三大挑战:📏 指标与损失不一致性🌀 边界不连续性⬜ 类矩形问题https://arxiv.org/pdf/2101.11952边界不连续性及其与最终检测指标的不一致性,一直是旋转检测回归损失设计的瓶颈。在本文中,我们提出了一种基于高斯 Wasserstein 距离的新型回归损失,作为解决该问题的基本方法。具体而言,将旋转边界框转换为二维高斯分布,这样就能够利用可通过梯度反向传播高效学习的高斯 Wasserstein 距离(GWD)来近似不可微分的旋转交并比(IoU)诱

2025-06-21 17:58:23 515

原创 YoloV12改进策略:卷积篇|风车卷积|即插即用

近年来,基于卷积神经网络(CNN)的红外小目标检测方法取得了卓越的性能。然而,这些方法通常采用标准卷积,忽略了红外小目标像素分布的空间特性。因此,我们提出了一种新型的风车形卷积(PConv)来替代骨干网络下层的标准卷积。PConv 更好地契合了微弱小目标像素的高斯空间分布,增强了特征提取能力,显著增大了感受野,并且参数增加量极少。此外,虽然最近的损失函数结合了尺度损失和位置损失,但它们没有充分考虑这些损失在不同目标尺度下的敏感性差异,这限制了在微弱小目标上的检测性能。

2025-06-18 17:43:50 113

原创 YoloV12改进策略:Block改进|EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025

标题: DarkIR: Robust Low-Light Image Restoration作者: Daniel Feijoo, Juan C. Benito, Alvaro Garcia, Marcos Conde论文链接:https://arxiv.org/pdf/2412.13443GitHub链接:https://github.com/cidautai/DarkIR。

2025-06-16 09:38:23 616

原创 YoloV11改进策略:Block改进|EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025

标题: DarkIR: Robust Low-Light Image Restoration作者: Daniel Feijoo, Juan C. Benito, Alvaro Garcia, Marcos Conde论文链接:https://arxiv.org/pdf/2412.13443GitHub链接:https://github.com/cidautai/DarkIR。

2025-06-16 09:37:53 505

原创 YoloV8改进策略:Block改进|EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025

标题: DarkIR: Robust Low-Light Image Restoration作者: Daniel Feijoo, Juan C. Benito, Alvaro Garcia, Marcos Conde论文链接:https://arxiv.org/pdf/2412.13443GitHub链接:https://github.com/cidautai/DarkIR。

2025-06-16 09:37:14 869

原创 YoloV12改进策略:激活函数改进:B-SiLU,最新激活函数|即插即用|涨点神器|独家复现

B-SiLUxxα⋅σx−α2α1.67B-SiLUxxα⋅σx−2α​α1.67其中 (\sigma(x)) 为 Sigmoid 函数。B-SiLU 的核心价值作为 SUGAR 框架的最优替代梯度函数,平衡了梯度平滑性与激活有界性。在保留 ReLU 稀疏前向的同时,彻底解决了梯度消失与神经元死亡问题。SUGAR 的普适性在 VGG/ResNet 等传统模型中显著提升性能(最高 +15.74%

2025-06-15 17:31:37 350

原创 Yolo11改进策略:激活函数改进:B-SiLU,最新激活函数|即插即用|涨点神器|独家复现

B-SiLUxxα⋅σx−α2α1.67B-SiLUxxα⋅σx−2α​α1.67其中 (\sigma(x)) 为 Sigmoid 函数。B-SiLU 的核心价值作为 SUGAR 框架的最优替代梯度函数,平衡了梯度平滑性与激活有界性。在保留 ReLU 稀疏前向的同时,彻底解决了梯度消失与神经元死亡问题。SUGAR 的普适性在 VGG/ResNet 等传统模型中显著提升性能(最高 +15.74%

2025-06-15 17:31:06 286

原创 YoloV8改进策略:激活函数改进|B-SiLU,最新激活函数|即插即用|涨点神器|独家复现

B-SiLUxxα⋅σx−α2α1.67B-SiLUxxα⋅σx−2α​α1.67其中 (\sigma(x)) 为 Sigmoid 函数。B-SiLU 的核心价值作为 SUGAR 框架的最优替代梯度函数,平衡了梯度平滑性与激活有界性。在保留 ReLU 稀疏前向的同时,彻底解决了梯度消失与神经元死亡问题。SUGAR 的普适性在 VGG/ResNet 等传统模型中显著提升性能(最高 +15.74%

2025-06-15 17:30:44 227

原创 YoloV12改进策略:Block改进|MKP,多尺度卷积核级联结构,增强感受野适应性|即插即用|AAAI 2025

FBRT-YOLO通过特征互补映射模块(FCM)与多内核感知单元(MKP)的创新设计,解决了航拍图像检测中小目标信息丢失和多尺度适应性不足的核心问题。理论层面:提出空间-语义信息互补映射机制,缓解深层网络位置信息衰减问题;工程层面:轻量化设计(参数量最高降74%)满足嵌入式设备实时需求;应用层面:在Visdrone等数据集上AP提升1.1-2.3%,为无人机安防、灾害监测提供高效解决方案。

2025-06-15 15:48:14 423

原创 Yolo11改进策略:Block改进|MKP,多尺度卷积核级联结构,增强感受野适应性|即插即用|AAAI 2025

FBRT-YOLO通过特征互补映射模块(FCM)与多内核感知单元(MKP)的创新设计,解决了航拍图像检测中小目标信息丢失和多尺度适应性不足的核心问题。理论层面:提出空间-语义信息互补映射机制,缓解深层网络位置信息衰减问题;工程层面:轻量化设计(参数量最高降74%)满足嵌入式设备实时需求;应用层面:在Visdrone等数据集上AP提升1.1-2.3%,为无人机安防、灾害监测提供高效解决方案。

2025-06-15 07:15:33 194

原创 YoloV8改进策略:Block改进|MKP,多尺度卷积核级联结构,增强感受野适应性|即插即用|AAAI 2025

FBRT-YOLO通过特征互补映射模块(FCM)与多内核感知单元(MKP)的创新设计,解决了航拍图像检测中小目标信息丢失和多尺度适应性不足的核心问题。理论层面:提出空间-语义信息互补映射机制,缓解深层网络位置信息衰减问题;工程层面:轻量化设计(参数量最高降74%)满足嵌入式设备实时需求;应用层面:在Visdrone等数据集上AP提升1.1-2.3%,为无人机安防、灾害监测提供高效解决方案。

2025-06-15 07:14:38 457

原创 YoloV12实战:手把手教你实现YoloV12的训练、测试

YOLOv12 首次在 YOLO 框架中成功集成注意力机制,通过和技术,在保持实时推理速度(如 YOLOv12-N 仅需 1.64ms)的同时显著提升精度(40.6% mAP)。其创新设计解决了传统注意力机制的二次计算复杂度和内存访问效率问题,使注意力模型在实时检测中首次超越 CNN 架构(如 YOLOv10-N 精度提升 2.1%)。通过优化梯度流与特征聚合,结合等精简设计,大幅降低计算开销(如 YOLOv12-S 的 FLOPs 仅为 RT-DETR-R18 的 36%)。

2025-06-15 07:11:36 87

原创 python实战:多线程队列系统设计:生产者-消费者模型

高效任务分发:通过队列系统解耦生产消费资源隔离:专属队列避免任务干扰弹性伸缩:动态调整生产者/消费者数量线程安全:Queue内置锁机制保障。

2025-06-14 07:48:10 34

原创 python实战:使用Python合并PDF文件

本文介绍的核心代码虽然只有不到10行,却解决了PDF处理中最常见的需求。简单易用:基础功能无需复杂学习曲线深度可控:支持从基础合并到高级操作的平滑过渡生态丰富:可与PyMuPDF等库配合实现OCR等高级功能。

2025-06-14 07:37:51 113

原创 Yolo11改进策略:Block改进|FCM,特征互补映射模块|AAAI 2025|即插即用

FBRT-YOLO通过特征互补映射模块(FCM)与多内核感知单元(MKP)的创新设计,解决了航拍图像检测中小目标信息丢失和多尺度适应性不足的核心问题。理论层面:提出空间-语义信息互补映射机制,缓解深层网络位置信息衰减问题;工程层面:轻量化设计(参数量最高降74%)满足嵌入式设备实时需求;应用层面:在Visdrone等数据集上AP提升1.1-2.3%,为无人机安防、灾害监测提供高效解决方案。

2025-06-09 19:10:16 1156

原创 YoloV8改进策略:Block改进|FCM,特征互补映射模块|AAAI 2025|即插即用

FBRT-YOLO通过特征互补映射模块(FCM)与多内核感知单元(MKP)的创新设计,解决了航拍图像检测中小目标信息丢失和多尺度适应性不足的核心问题。理论层面:提出空间-语义信息互补映射机制,缓解深层网络位置信息衰减问题;工程层面:轻量化设计(参数量最高降74%)满足嵌入式设备实时需求;应用层面:在Visdrone等数据集上AP提升1.1-2.3%,为无人机安防、灾害监测提供高效解决方案。

2025-06-09 19:09:13 942

原创 YOLOv12:以注意力为中心的实时目标检测器

长期以来,改进YOLO框架的网络架构一直是研究重点,但主要集中在基于CNN的改进上,尽管注意力机制已被证明在建模能力上具有显著优势。这是因为基于注意力的模型在速度上无法与基于CNN的模型相媲美。本文提出了一种以注意力为核心的YOLO框架——,它在保持与先前基于CNN模型相当速度的同时,充分利用了注意力机制的性能优势。YOLOv12在精度上超越了所有流行的实时目标检测器,同时保持了具有竞争力的速度。例如,YOLOv12-N在T4 GPU上以1.64毫秒的推理延迟实现了40.6%mAP。

2025-06-09 06:17:35 58

原创 YoloV12改进策略:Block改进|TAB,融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用

本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。CATANet的整体架构包括三个主要模块:组内自注意力(IASA)组间交叉注意力(IRCA)令牌聚合块(Token-Aggregation Block, TAB)令牌聚合块(Token-Aggregation Block, TAB)是其核心组件,

2025-06-07 06:43:00 780

原创 YoloV10改进策略:Block改进|TAB,融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用

本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。CATANet的整体架构包括三个主要模块:组内自注意力(IASA)组间交叉注意力(IRCA)令牌聚合块(Token-Aggregation Block, TAB)令牌聚合块(Token-Aggregation Block, TAB)是其核心组件,

2025-06-07 06:42:29 369

原创 YoloV9改进策略:Block改进|TAB,融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用

本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。CATANet的整体架构包括三个主要模块:组内自注意力(IASA)组间交叉注意力(IRCA)令牌聚合块(Token-Aggregation Block, TAB)令牌聚合块(Token-Aggregation Block, TAB)是其核心组件,

2025-06-06 07:05:58 593

原创 YoloV8改进策略:Block改进|TAB,融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用

本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。CATANet的整体架构包括三个主要模块:组内自注意力(IASA)组间交叉注意力(IRCA)令牌聚合块(Token-Aggregation Block, TAB)令牌聚合块(Token-Aggregation Block, TAB)是其核心组件,

2025-06-06 07:05:08 540

原创 Yolo11改进策略:Block改进|LRSA,局部区域自注意力|即插即用|代码详解|全网首发|完整代码

本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。论文提出LRSA模块,是一种局部区域自注意力模块,我使用它来改进Yolo11,取得了不错的效果。CATANet的整体架构包括三个主要模块:在CATANet模型中,**局部区域自注意力(Local-Region Self-Attention, LR

2025-06-05 07:14:29 730

原创 YoloV10改进策略:Block改进|LRSA,局部区域自注意力|即插即用|代码详解|全网首发|完整代码

通过网盘分享的文件:YoloV8改进策略:Block改进-LRSA,局部区域自注意力-即插即用-代码详解-全网首发-完整代码链接: https://pan.baidu.com/s/1wEOU1-yAEhkfNHhxHKcMeg?pwd=2shr 提取码: 2shr--来自百度网盘超级会员v3的分享。

2025-06-05 06:56:59 76

原创 YoloV9改进策略:Block改进|LRSA,局部区域自注意力|即插即用|代码详解|全网首发|完整代码

通过网盘分享的文件:YoloV8改进策略:Block改进-LRSA,局部区域自注意力-即插即用-代码详解-全网首发-完整代码链接: https://pan.baidu.com/s/1wEOU1-yAEhkfNHhxHKcMeg?pwd=2shr 提取码: 2shr--来自百度网盘超级会员v3的分享。

2025-06-05 06:31:46 54

原创 YoloV8改进策略:Block改进|LRSA,局部区域自注意力|即插即用|代码详解|全网首发|完整代码

本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。论文提出LRSA模块,是一种局部区域自注意力模块,我使用它来改进YoloV8,取得了不错的效果。CATANet的整体架构包括三个主要模块:在CATANet模型中,**局部区域自注意力(Local-Region Self-Attention, LR

2025-06-04 06:38:58 342

原创 Yolo11改进策略:Block改进|TAB,融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用

本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。

2025-06-01 07:56:50 78

原创 Yolo11改进策略:卷积篇-风车卷积-即插即用

论文标题:《Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection》论文链接:https://arxiv.org/pdf/2412.16986GitHub链接:https://github.com/JN-Yang/PConv-SDloss-Datahttps://arxiv.org/pdf/2412.16986近年来,基于卷积神经网络(CNN)的红外小目标检测方法取得了卓越的性

2025-05-27 19:56:34 118

原创 【大模型Pre-Training实战总结】实现Qwen3增量预训练,Lora训练与合并

大模型一般分三个阶段(现在有很多个阶段的,比如DeepSeek),首先要完成的是Pre-Training阶段。预训练是指在大量无标签数据上进行训练,使模型学习到一些基础的语言表示和知识。常见的预训练方法包括自回归语言模型(如GPT系列)、自编码器等。这些方法通过在大规模语料库上训练,使模型能够理解语言的语法、语义和上下文信息。这篇文章试图告诉大家如何去实现增量Pre-Training。

2025-05-26 21:11:42 142

原创 YoloV8改进策略:主干网络改进-使用Swin-TransformerV2替换Yolo的主干-即插即用

论文标题:Swin Transformer V2: Scaling Up Capacity and Resolution论文链接:https://arxiv.org/pdf/2111.09883.pdfGitHub链接:https://github.com/microsoft/Swin-Transformer大规模 NLP 模型已被证明可以显着提高语言任务的性能,并且没有饱和迹象。它们还展示了与人类一样的惊人的少发能力。本文旨在探索计算机视觉中的大规模模型。我们解决了大型视觉模型训练和应用中的三个主要

2025-05-24 06:43:04 403 4

原创 YoloV10改进策略:卷积篇|风车卷积|即插即用

近年来,基于卷积神经网络(CNN)的红外小目标检测方法取得了卓越的性能。然而,这些方法通常采用标准卷积,忽略了红外小目标像素分布的空间特性。因此,我们提出了一种新型的风车形卷积(PConv)来替代骨干网络下层的标准卷积。PConv 更好地契合了微弱小目标像素的高斯空间分布,增强了特征提取能力,显著增大了感受野,并且参数增加量极少。此外,虽然最近的损失函数结合了尺度损失和位置损失,但它们没有充分考虑这些损失在不同目标尺度下的敏感性差异,这限制了在微弱小目标上的检测性能。

2025-05-23 06:27:31 51

原创 【SFT监督微调总结】大模型SFT全解析:从原理到工具链,解锁AI微调的核心密码

监督微调(Supervised Fine-Tuning, SFT)是一种在预训练语言模型(LLM)基础上,使用高质量标注数据进一步优化模型以适应特定任务或领域的技术。其核心是通过输入-输出对的标注数据(如指令、问题与答案),调整模型参数,使其在特定场景下生成更符合人类期望的响应。与预训练(PT)的区别数据需求:PT依赖大规模未标注数据,而SFT需要标注数据(如指令、答案对)。目标:PT旨在学习语言的通用表示,SFT则针对具体任务优化模型性能(如对话生成、数学推理)。训练成本。

2025-05-20 17:52:26 215

原创 YoloV9改进策略:卷积篇|风车卷积|即插即用

近年来,基于卷积神经网络(CNN)的红外小目标检测方法取得了卓越的性能。然而,这些方法通常采用标准卷积,忽略了红外小目标像素分布的空间特性。因此,我们提出了一种新型的风车形卷积(PConv)来替代骨干网络下层的标准卷积。PConv 更好地契合了微弱小目标像素的高斯空间分布,增强了特征提取能力,显著增大了感受野,并且参数增加量极少。此外,虽然最近的损失函数结合了尺度损失和位置损失,但它们没有充分考虑这些损失在不同目标尺度下的敏感性差异,这限制了在微弱小目标上的检测性能。

2025-05-19 22:52:01 114

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除