一元回归及多元回归模型

本文通过Matlab探讨一元和多元线性回归模型。案例分析了一元线性回归中车辆使用时长与市场价格的关系,以及多元回归中湖水污染物与工业产值等变量的关系,介绍了回归分析的基本步骤和相关统计概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、前言

二、案例分析求解

2.1问题一

2.1.1分析

2.1.2Matlab求解一元线性回归模型 

2.1.3结果

2.2问题二

2.2.1分析

2.2.2Matlab求解

2.2.3结果 

三、回归分析


一、前言

对于线性回归方程模型,在数据点拟合中,常常利用多项式进行拟合,找出一条数据点与线上距离平方和最小的曲线。

1.[p,s]=polyfit(x,y,n)为进行x向量与y向量进行多项式求解的函数,n为拟合函数的次数。p为由高到低的系数矩阵,s为结构数组。

2.ployval(p,x)为求拟合方程p在x处的值。

3.r=corrcoef(x,y)为求相关系数矩阵,1表示最大程度的正相关,-1表示最大程度的负相关。

二、案例分析求解

2.1问题一

       首先,先看第一个例子,众所周知,车辆都是具有使用寿命和使用年限的,一般来说,随着使用时间的增长,车辆的新度(几成新)也在不断地降低,车辆此时的市场价格也在发生着变化。请研究使用时长(x)与车辆市场价格(y)之间的关系。

2.1.1分析

        对于使用时长和市场价格之间的关系,首先应利用plot绘图函数进行数据点的刻画,结合所学知识进行初步判断,进行多项式拟合,并验证设想。

x=1:10;

y=2650 1942 1493 1056 766 539 485 291 224 202;

2.1.2Matlab求解一元线性回归模型 

1.利用软件进行数据点的刻画

结合所学知识,观察图像可知,数据点的解读为,随着使用年限的增加,车辆的时长价格又迅速的下降趋势转变为缓慢的下降趋势。

相关程序:

clear
x=1:10;
y=[2650 1942 1493 1056 766 539 485 291 224 202];
plot(x,y,'ok')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值