目录
一、前言
对于线性回归方程模型,在数据点拟合中,常常利用多项式进行拟合,找出一条数据点与线上距离平方和最小的曲线。
1.[p,s]=polyfit(x,y,n)为进行x向量与y向量进行多项式求解的函数,n为拟合函数的次数。p为由高到低的系数矩阵,s为结构数组。
2.ployval(p,x)为求拟合方程p在x处的值。
3.r=corrcoef(x,y)为求相关系数矩阵,1表示最大程度的正相关,-1表示最大程度的负相关。
二、案例分析求解
2.1问题一
首先,先看第一个例子,众所周知,车辆都是具有使用寿命和使用年限的,一般来说,随着使用时间的增长,车辆的新度(几成新)也在不断地降低,车辆此时的市场价格也在发生着变化。请研究使用时长(x)与车辆市场价格(y)之间的关系。
2.1.1分析
对于使用时长和市场价格之间的关系,首先应利用plot绘图函数进行数据点的刻画,结合所学知识进行初步判断,进行多项式拟合,并验证设想。
x=1:10;
y=2650 1942 1493 1056 766 539 485 291 224 202;
2.1.2Matlab求解一元线性回归模型
1.利用软件进行数据点的刻画
结合所学知识,观察图像可知,数据点的解读为,随着使用年限的增加,车辆的时长价格又迅速的下降趋势转变为缓慢的下降趋势。
相关程序:
clear
x=1:10;
y=[2650 1942 1493 1056 766 539 485 291 224 202];
plot(x,y,'ok')