要用C语言实现基于BAW模型的隐含波动率计算算法,可以采用二分法来求解隐含波动率。以下是一个简单的示例代码,展示了如何实现这一过程:
示例代码:
#include <stdio.h>
#include <math.h>
// 定义常量
#define CALL 1
#define PUT -1
// Black-Scholes公式计算期权价格
double BlackScholes(int optionType, double S, double K, double T, double r, double sigma) {
double d1 = (log(S / K) + (r + 0.5 * sigma * sigma) * T) / (sigma * sqrt(T));
double d2 = d1 - sigma * sqrt(T);
if (optionType == CALL) {
return S * exp(-r * T) * 0.5 * (1 + erf(d1 / sqrt(2))) - K * exp(-r * T) * 0.5 * (1 + erf(d2 / sqrt(2)));
} else {
return K * exp(-r * T) * 0.5 * (1 + erf(-d2 / sqrt(2))) - S * exp(-r * T) * 0.5 * (1 + erf(-d1 / sqrt(2)));
}
}
// 二分法求解隐含波动率
double ImpliedVolatility(int optionType, double marketPrice, double S, double K, double T, double r) {
double sigmaLow = 0.0;
double sigmaHigh = 1.0;
double sigma = 0.5 * (sigmaLow + sigmaHigh);
double price = BlackScholes(optionType, S, K, T, r, sigma);
while (fabs(price - marketPrice) > 0.0001) {
if (price < marketPrice) {
sigmaLow = sigma;
} else {
sigmaHigh = sigma;
}
sigma = 0.5 * (sigmaLow + sigmaHigh);
price = BlackScholes(optionType, S, K, T, r, sigma);
}
return sigma;
}
int main() {
// 示例参数
int optionType = CALL;
double marketPrice = 10.0;
double S = 100.0;
double K = 105.0;
double T = 0.5;
double r = 0.03;
double impliedVol = ImpliedVolatility(optionType, marketPrice, S, K, T, r);
printf("隐含波动率: %f\n", impliedVol);
return 0;
}
代码说明:
·Black-Scholes公式:函数 BlackScholes 用于计算期权价格,输入参数包括期权类型(看涨或看跌)、股票价格、行权价格、到期时间、无风险利率和波动率。
·二分法求解隐含波动率:函数 ImpliedVolatility 使用二分法来求解隐含波动率。它通过不断调整波动率,使得计算出的期权价格接近市场价格。
·主函数:在 main 函数中,设置了一些示例参数,并调用 ImpliedVolatility 函数计算隐含波动率。