先附上一张官方测评图
一众快思考模型对此无能为力。
o1-mini经过多次prompt(无数学提示,以y=x结果提示,让其输出y=ax+b)仍然无法达成。
最后deepseek-r1推理模型有效协助解决了该数值分析问题。同时好评glm-4的聊天框 直接代码执行能力。为结果验证提供了便利。
问题:
((((x1_m*e+x2_m)*e)+x3_m)*e+...) + (x1_a*f+x2_a*f+x3_a*f+x4_a*f)
来自工程需求,多次累乘一个值,让之前原来的项的值都保持线性增长。此时只需保留一个累乘项和常数累加项即可。求出累乘系数e(求得指数的底)和累加预乘系数f (即求得拟合函数的常数项)。
利用指数函数在自变量域[-x,x]上拟合线性函数y=ax+b,
要求每个整数点误差均不超过z%,
结合数学方法,给出通用公式并验证正确性。
最终答案:
y=axmaxz/100(e(z/100xmax)x−1)+by = \frac{ax_{\text{max}}}{z/100} \left( e^{\left(\frac{z/100}{x_{\text{max}}} \right) x} - 1 \right) + by=z/100axmax(e(xmaxz/100)x−1)+b
验证:在以下两组输入上均成立
a=2,b=1, z=3,x∈[0,0.75]
a=7,b=3, z=5,x_max=5100000000
非数学专业,如有错误,敬请指正。
Step1 y=x
思考过程:
好吧,我需要解决这个问题。用户希望用一个指数函数来拟合直线y = x,并且希望在尽可能大的范围内,比如从0到几百,使得在所有整数点上,误差不超过5%。用户之前尝试了从0到1000,但发现误差很大,后来缩小到0到100,误差控制得还不错。现在,用户希望我通过调整参数,找到一个指数函数,使得在从0到某个最大的整数范围内,所有整数点的误差都在5%以内。
首先,我需要明确什么是误差不超过5%。通常,误差可以是绝对误差或者相对误差。在这里,可能是相对误差,即|y_拟合 - y_实际|/y_实际 ≤ 5%。但是,当y_实际 = 0时,这个表达式没有意义,所以可能需要特别处理x = 0的情况。
其次,我需要选择一个指数函数的形式。用户之前使用的是y = A(e^(Bx) - 1),这可能是一个不错的选择,因为它在x = 0时自然满足y = 0,与y = x相符。
现在,我需要确定参数A和B,使得在从0到某个最大整数x_max的范围内,所有整数点的误差不超过5%。
首先,我可以利用x = 0时,y = 0,这已经满足,因为y = A(e^0 - 1) = 0。
接下来,考虑x = x_max,我希望y = A(e^(Bx_max) - 1) = x_max,这样在x = x_max处拟合值等于实际值。但是,这可能会导致在其他点误差过大。
或者,我可以选择其他方式来确定A和B,比如最小二乘拟合,或者在多个点上满足等式。
不过,用户可能更希望在所有整数点上误差都控制在5%,而不是最小二乘意义上的整体误差最小。
所以,我需要找到A和B使得对于所有整数x从0到x_max,都有|A(e^(Bx) - 1) - x|/x ≤ 5%,其中x > 0,而对于x = 0,只要y = 0就行。
首先,我需要选择一个B值,然后根据x = x_max来确定A,或者反过来。
可能更方便的是先选择B,然后求A使得在x = x_max时y = x,即A(e^(Bx_max) - 1) = x_max,所以A = x_max/(e^(Bx_max) - 1)。
然后,我需要检查在所有x从0到x_max的整数点上,误差是否小于5%。
这个过程可能需要通过数值方法来实现,因为解析求解可能比较困难。
我打算采用以下步骤:
1. 选择一个B值,可能从之前的尝试中得到一个初步估计,比如B很小,因为指数函数需要近似线性增长。
2. 根据B,计算A = x_max/(e^(Bx_max) - 1)。
3. 对于每个整数x从0到x_max,计算y = A(e^(Bx) - 1),然后计算相对误差|y - x|/x(对于x >