自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(250)
  • 收藏
  • 关注

原创 MapTR v1v2原作者讲解

2025-07-25 07:39:28 22

原创 BEV感知实时构建路口拓扑 觉非科技基于MapTR的优化与实践

觉非科技基于MapTR方法,通过车路协同数据积累对实时矢量建图技术进行优化:1)改进车道信息表达,增加中心线、方向及宽度属性输出;2)引入地图先验信息提升复杂路口的拓扑识别准确率;3)优化道路拓扑表达,实现自动车道挂接。这些改进使建图结果更符合自动驾驶规控需求,在nuScenes数据集上展现出优越性能。该技术通过多任务联合训练持续迭代,为自动驾驶感知系统提供更安全可靠的实时环境理解能力。

2025-07-22 23:01:05 629

原创 BEV 在线实时局部地图构建的三个经典方案对比和思考(HDMapNet,VectorMapNet,MapTR)

本文对比分析了三种基于BEV范式的在线局部高精地图生成方案:HDMapNet(2022)采用语义分割思路,通过三个分支分别处理语义、实例嵌入和方向,需复杂后处理;VectorMapNet(2022)创新性地将地图要素抽象为关键点,结合DETR框架实现端到端检测,但依赖序列生成导致效率受限;MapTR(2023)在VectorMapNet基础上改进,直接预测固定长度点集并引入顺序无关机制,在精度(mAP提升15%)和效率(达25FPS)上显著提升,成为当前最优解决方案。三种方案体现了从分割到检测、从非端到端到

2025-07-22 22:43:00 571

原创 Transformer中的Q 、K、V是什么,为什么要用三个不一样的?

2025-07-22 12:36:35 9

原创 pdb.set_trace()

的 Python 内置调试模块可以轻松设置断点并调试代码!一旦代码运行到这里,它会暂停并进入交互调试模式。的位置,你可以开始调试变量和逻辑了!:继续运行直到下一个断点。运行代码后,程序会暂停在。

2025-07-20 17:45:58 133

原创 nohup指令

用服务器做pytorch训练时,直接跑python命令如果连接不小心断了,训练也就断了。可以在bash中使用nohup配合&来解决该问题。2表示错误,1表示标准输出,2>&1表示把标准错误定向到标准输出上,一起输出。按下Ctrl+C或者关闭终端,程序都仍然运行,需要通过kill来终止进程。训练中的标准输出将放入out.log中。按下Ctrl+C,程序依然运行。按下Ctrl+C,程序结束。nohup 指定输出文件。关闭终端,程序依然运行。

2025-07-20 17:40:51 184

原创 python 字典中取值

解读 xxx = np.float32( data_loaded["intrinsics"]["fisheye_parameters"].get( "xxx", 1.0))总结:这段代码的主要目的是以安全方式从字典中获取参数值,并确保值的类型是。中提取一个键值,并将其转换为单精度浮点数。它处理了键可能不存在的情况,非常实用!格式的值,用于后续计算或处理。这段代码的作用是从字典结构。这是访问嵌套字典的部分,从。)强制转换为单精度浮点类型。键不存在,则返回默认值。将获得的值(无论是实际的。

2025-07-20 17:36:00 153

原创 bash方式启动模型训练

export \nohup \mtn.py \--train \AI解读:这段指令的目标是设置环境变量并运行一个 Python 脚本来启动训练任务,同时将日志输出分别记录到文件。

2025-07-19 18:30:28 468

原创 MapDR 在线矢量建图+交通规则理解

遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。而目前的在线建图方法主要关注于车道线、道路拓扑等道路结构的感知,忽视了对于包含更多语义信息的交通规则的理解,这一局限使自动驾驶系统仍然需要依赖离线地图获取交通规则,限制了自动驾驶系统的“在线化”趋势。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,首先理解交通标志牌中指示的车道级交通规则内容,同时要明确规则作用于具体哪一条车道(关联到具体的车道中心线)。

2025-07-12 02:30:33 19

原创 docker exec it xxx bask

it :目前的理解浅薄,就是要等在容器内的命令执行完毕才会出来到当前操作;没有-it的加就相当于在容器内执行一下命令,不等容器内部是否执行完毕直接出来,而我们看见的他在上面是因为容器内的执行快,(行动派可以试试在里面写个循环制造时间验证)dockerexec -it CONTAINER_ID bash进入容器终端并且的保留为容器终端的输入形式(-it和bash的结合作用)dockerexec -it CONTAINER_ID bash进入容器终端并且的保留为容器终端的输入形式.那么就出来了 -it …

2025-07-09 09:04:31 283

原创 端到端矢量化地图构建与规划

2025-07-06 22:16:35 81

原创 零跑记忆行车和记忆泊车融合定位框架设计案例

2025-07-06 10:54:44 29

原创 MapTRV2解读

MapTRV2在V1基础上进行了优化升级,主要改进包括:1)解耦self-attention降低计算复杂度;2)发现BEV特征更适合地图重建任务;3)针对nuScenes等缺少高度信息的场景优化处理;4)补充了中心线建模,并引入训练技巧加速收敛。虽然计算效率提升,但推理速度未明显改善。该版本通过架构优化和训练策略调整,实现了性能提升,是MapTR的增强版。

2025-07-06 07:54:06 31

原创 MapTR解读

MapTR技术摘要(150字) MapTR提出了一种创新的高精地图建模方法,通过置换等价建模解决点集顺序问题。核心创新包括:1) 将地图元素建模为具有等价置换的点集,统一处理顺时针/逆时针方向问题;2) 设计层次化查询嵌入结构(实例队列+点队列),采用双层注意力机制获取BEV特征;3) 引入层次化双边匹配策略(实例级+点级匹配)和方向损失约束形状。训练使用多任务损失(类别、曼哈顿距离、方向)和匈牙利算法匹配。该方法通过BEVFormer架构实现,支持端到端训练,有效解决了地图元素建模中的点序敏感性难题,为自

2025-07-06 07:48:11 28

原创 python -- index_put_

python index_put_ 用法说明

2025-07-03 20:23:00 81

原创 NuSences 数据集解析以及 nuScenes devkit 的使用 -- 代码

本文介绍了如何使用NuScenes数据集进行自动驾驶研究。内容主要包括:1)初始化NuScenes数据库并查看场景和样本元数据;2)探索传感器数据、样本注释、实例和类别等数据结构;3)演示数据可视化方法,包括点云渲染、样本渲染和场景视频生成;4)讲解如何通过反向索引和快捷方式高效查询数据。该数据集包含1000个20秒的场景,每半秒标注一次,涵盖激光雷达、雷达和相机等多种传感器数据,为自动驾驶算法开发提供了丰富的多模态标注信息。

2025-07-03 20:20:25 37

原创 NuSences 数据集解析以及 nuScenes devkit 的使用 -- 使用教程

本文介绍了NuScenes自动驾驶数据集的使用教程,主要包括:1)数据集下载与结构解析,包含地图、关键帧、过渡帧和元数据文件;2)NuScenes devkit的安装与初始化方法;3)数据结构的详细说明,包括场景、样本、传感器数据、标注、实例、类别等核心概念;4)数据可视化方法,如点云渲染、视频生成和地图显示。教程还提供了反向索引和快捷方式的使用技巧,帮助用户高效查询数据。该数据集包含多模态传感器数据(6相机、1激光雷达、5毫米波雷达)和丰富的标注信息,适用于自动驾驶算法开发。

2025-07-03 20:17:31 36

原创 NuSences 数据集解析以及 nuScenes devkit 的使用 -- 官网介绍

nuScenes是由Motional团队开发的大规模自动驾驶数据集,包含波士顿和新加坡的1000个20秒驾驶场景,涵盖复杂交通状况。数据集提供多传感器数据(6摄像头、1激光雷达、5雷达、GPS/IMU)及23类物体的3D标注,含1.4M图像、390k激光雷达扫描和1.4M物体框。相比KITTI,nuScenes标注量多7倍,并首次提供完整传感器套件数据。2020年新增激光雷达点云语义分割标注(32类标签)。数据通过精确校准和同步采集,支持检测、跟踪等任务,旨在推动自动驾驶算法在复杂城市场景中的发展。

2025-07-03 19:50:20 22

原创 使用案例 - 根据nuscenes-devkit工具读取nuscnes数据集

本文介绍了NuScenes数据集处理流程:1)安装nuscenes-devkit工具包;2)根据数据集版本和用途获取场景划分;3)创建NuScenes类采样数据并调整文件路径格式;4)构建SegData类继承NuscData,实现数据加载接口;5)创建数据集和DataLoader。关键步骤包括场景划分、数据采样、格式调整和加载器构建,为后续模型训练提供数据支持。

2025-07-02 20:22:13 60

原创 智能驾驶感知算法任务简介

典型输出维度为 [B, C, X, Y, Z],其中 B 为 batch size,C 为类别数或 occupancy 状态数,X、Y、Z 表示 3D 空间上的 voxel 网格。多类别建图:支持同时预测多类地图元素,如 divider(车道之间的分隔线)、boundary(道路边界)、arrow(导向箭头)、stopline(停止线) 等。, pn],每个点为 (x, y) 或 (x, y, attr)(带语义)。与传统的栅格输出不同,MapTR 直接输出点序列形式的几何结构,精度更高。

2025-07-01 13:22:37 30

原创 python f-string

f-string 用法。

2025-03-20 08:05:51 175

原创 python static_method

static_method

2025-03-15 18:43:08 131

原创 Deepseek -> 如何在PyTorch中合并张量

首先,torch.cat是在已有的维度上拼接,比如两个形状是(2,3)的张量,用cat在dim=0的话,就会变成(4,3),而dim=1的话就是(2,6)。而torch.stack则会新建一个维度,比如两个(3,4)的张量,用stack在dim=0的话,结果变成(2,3,4)。比如A是(2,3),B是(2,3),cat之后在dim=0变成(4,3),dim=1变成(2,6)。而stack的话,结果会是(2,2,3)或者(2,3,2),取决于dim参数。比如用cat的时候,除了拼接的维度,其他维度必须相同。

2025-03-12 21:29:15 597

原创 Deepseek -> 如何写 Dockerfile

同时要提醒常见的注意事项,比如每条指令生成一层,优化层数,使用.dockerignore忽略不必要的文件。用户可能的需求是部署自己的应用,或者搭建环境,所以实际示例应该贴近常见场景,比如Python应用。但根据问题,用户主要问的是制作Dockerfile,所以重点在步骤和示例,其他优化可以稍微提及。这部分可能用户容易混淆,得解释CMD是默认命令,可以被覆盖,而ENTRYPOINT是入口点,通常一起使用。总之,分步骤讲解,每个指令的作用,给出示例,注意事项,最后验证方法。1. **指定基础镜像**

2025-03-12 12:44:31 559

原创 Dockerfile -> Docker image -> Docker container

Dockerfile->Dockerimage->Dockercontainer

2025-01-19 23:06:34 340

原创 Docker使用 使用Dockerfile来创建镜像

使用Dockerfile来创建镜像

2025-01-19 23:05:54 859

原创 docker打包镜像并迁移:如何从A服务器打包docker镜像到B服务器上容器中运行

docker打包镜像并迁移:如何从A服务器打包docker镜像到B服务器上容器中运行

2024-12-20 03:15:37 1623

原创 onnx_graphsurgeon:ONNX“柳叶刀”(子图拆分与融合)

需要注意的是onnx_graphsurgeon。

2024-12-11 11:41:33 366

原创 MMCV之Runner介绍

mmcv/runner/base_runner.py文件中,定义了runner类。该类用于管理一个模型的训练和评估过程。这里放张官方示意图(runner简单来说就是实现了右边是个红色框的类):本文介绍了mmcv中runner介绍,基本所有mmdet模型都用到上述两个runner。

2024-10-22 00:35:22 795 1

原创 如何使用vscode的launch.json来debug调试

如何使用vscode的launch.json来debug调试?

2024-10-12 10:43:52 2823

原创 Python 字典(Dictionary) items(),pop(‘key‘)方法

字典(Dictionary) items(),pop('key')方法

2024-10-08 12:45:10 365

原创 python中zip()与zip(*)的用法解析

zip()与zip(*)的用法解析

2024-10-08 12:37:10 428

原创 (简单搞懂)from abc import ABC,abstractmethod是什么意思

说白了,现在我们就是要定义一些==抽象方法==,然后子类继承的时候==必须要重写==这些方法。出于这个目标,我们就要用到==abc==这个包。

2024-10-04 10:38:02 624

原创 安装mmengine和mmsegmentation

安装mmengine和mmsegmentation

2024-10-04 08:48:46 324

原创 【mmsegmentation】Backbone模块(进阶)自定义自己的BACKBONE

mmsegmentation 自定义自己的BACKBONE

2024-10-02 23:46:19 453

原创 【mmsegmentation】Head模块(进阶)自定义自己的HEAD

mmsegmentation 自定义自己的HEAD

2024-10-02 22:56:09 334

原创 【mmsegmentation】Loss模块(进阶)自定义自己的LOSS

mmsegmentation框架 自定义自己的LOSS

2024-10-02 16:59:10 389

原创 【mmsegmentation】Loss模块详解(入门)以调用FocalLoss为例

【mmsegmentation】调用FocalLoss为例

2024-10-02 16:02:34 743

原创 【mmengine】优化器封装(OptimWrapper)(进阶)在执行器(Runner)中配置优化器封装(OptimWrapper)

在执行器(Runner)中配置优化器封装(OptimWrapper)

2024-10-02 09:51:41 601

原创 【mmengine】优化器封装(OptimWrapper)(入门)优化器封装 vs 优化器

优化器封装(OptimWrapper)(入门)优化器封装 vs 优化器

2024-10-02 09:30:45 665

【YOLOV8 轻量化改进】 使用高效网络EfficientNetV2替换backbone

【YOLOV8 轻量化改进】 使用高效网络EfficientNetV2替换backbone

2024-07-23

YOLOv8-OBB旋转目标检测,使用自己的数据集

YOLOv8_OBB旋转目标检测,使用自己的数据集

2024-03-10

一篇yolov5和yolov8实战性能比较的论文

一篇yolov5和yolov8实战性能比较的论文

2024-06-17

YOLOV8检测,分割,分类,跟踪项目源码

YOLOV8检测,分割,分类,跟踪源码,已训练好

2024-05-16

猫狗二分类数据集,可用于分类项目中

猫狗二分类数据集

2024-05-03

基于vision transformer(ViT)实现猫狗二分类项目实战

基于vision transformer(ViT)实现猫狗二分类项目实战

2024-05-03

Segformer语义分割

Segformer语义分割

2024-04-24

「分布式训练」+ DDP单机多卡并行指南 PPT

「分布式训练」+ DDP单机多卡并行指南

2024-04-10

DeepLabV3+语义分割项目代码

DeepLabV3+语义分割项目代码

2024-04-02

U-Net语义分割项目代码

U-Net语义分割项目代码

2024-04-02

YOLOv8知识蒸馏源码

YOLOv8知识蒸馏源码

2024-03-27

YOLOv8模型剪枝源码

YOLOv8模型剪枝源码

2024-03-27

OpenLane车道线数据集百度网盘链接(永久有效)

总大小:114.39G OpenLane包含20万帧、超过88万条实例级车道、14个车道类别(单白色虚线、双黄色实体、左/右路边等),以及场景标签和路线邻近目标(CIPO)注释,以鼓励开发3D车道检测和更多与产业相关的自动驾驶方法。

2024-03-27

Transformer+BEV感知论文大集合.zip

收录常见的Transformer+BEV感知论文

2024-03-12

DeepLabV3+模型剪枝实战

剪枝前: macs=37410432000, nparams=3322455 剪枝后: macs=9498316800, nparams=855855 参数量比: ratio = 0.257597

2024-03-05

基于YOLOv5和DeepSort算法实现的目标追踪(源码+模型+权重+测试视频)(一键运行)

基于DeepSORT算法和YOLOv5 的目标跟踪实现。DeepSORT是一种强大的多目标跟踪算法,结合YOLOv5 的目标检测能力,可以实现高效准确的实时目标跟踪。 基于 YOLOV5 和 DeepSort 的目标追踪算法是一种结合了目标检测和运动预测的方法,用于在视频中实现多目标跟踪。 YOLOV5 是一种目标检测算法,它能够从视频帧中检测出目标对象,并给出其位置信息。具体来说,YOLOV5 通过将视频分解成多幅图像并逐帧执行,能够识别出每帧中的目标对象,并为其分配标签。 DeepSort 是基于 SORT 的目标跟踪算法的改进版。它从 SORT 演变而来,使用卡尔曼滤波器预测所检测对象的运动轨迹,并使用匈牙利算法将它们与新的检测目标相匹配。DeepSort 还整合了外观信息,从而提高 SORT 的性能,这使得在遇到较长时间的遮挡时,也能够正常跟踪目标,并有效减少 ID 转换的发生次数。 在基于 YOLOV5 和 DeepSort 的目标追踪算法中,首先使用 YOLOV5 对视频帧进行目标检测,然后使用 DeepSort 对检测到的目标进行跟踪。

2024-03-03

基于YOLOV8-pose的姿态关键点检测项目,带数据集,可直接跑通源码

基于YOLOV8-pose的姿态关键点检测项目,带数据集,可直接跑通源码

2024-02-29

猫狗数据集的二分类图像识别项目:基于VIT(vision transformer)

1、本项目基于VIT(vision transformer)迁移学习的图像分类。 2、模型已训练好,可以直接运行,服务器上使用8个GPU,训练200个epoch,accuracy达到0.995。 3、资源中包含了猫狗二分类数据集。 4、如果想要训练自己的数据集,请查看README文件。

2024-02-08

addc_2025-02-26-14-37-28_5.zip

w

2025-03-31

wwwwxwwwwwwwwwswwwwwwwwwwwx

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwx

2024-11-12

wwwwwwxwwww

wwwwwwwwwwwwwwwwwwwx

2024-10-21

LSS代码(个人改写,比原版易读,易用)

LSS代码(个人改写,比原版易读,易用)

2024-09-18

snow-road snow-road snow-road

snow_road snow_road snow_road

2024-09-12

MobaXterm免安装版,可以直接运行使用

主要功能 支持各种连接 SSH,X11,RDP,VNC,FTP,MOSH 支持 Unix 命令(bash,ls,cat,sed,grep,awk,rsync,…) 连接 SSH 终端后支持 SFTP 传输文件 各种丰富的插件(git/dig/aria2…) 可运行 Windows 或软件

2024-09-11

BEVDet检测结果 BEVDet检测结果

BEVDet检测结果

2024-09-02

目标检测目标检测目标检测目标检测目标检测目标检测

目标检测目标检测目标检测目标检测目标检测

2024-08-28

车道线检测的一些内容wwww

车道线检测

2024-08-26

wwwwwwwwwwwwwwwwwwwwwwwwww

wwwwwww

2024-08-12

路面分类及弯道数据集 未标注

路面分类及弯道数据集 未标注

2024-08-06

【轻量化结构】一文带你看遍轻量化网络结构模型

轻量化网络模型介绍

2024-08-01

全网独家LSS: Lift, Splat, Shoot(3):代码复现

LSS代码(加注释)

2024-07-30

BEV LSS模型预训练权重

BEV LSS模型预训练权重

2024-07-29

YOLOV5知识蒸馏源码

YOLOV5知识蒸馏源码

2024-07-27

YOLOV5 PTQ,QAT量化源码

YOLOV5 PTQ,QAT量化源码

2024-07-27

YOLOV8多任务(车道线检测+目标检测+可行驶区域)模型项目源码(带数据,可一键运行)

YOLOV8多任务(车道线检测+目标检测+可行驶区域)模型项目源码(带数据,可一键运行)

2024-07-26

仅使用卷积!BEVENet:面向自动驾驶BEV空间的高效3D目标检测

仅使用卷积!BEVENet:面向自动驾驶BEV空间的高效3D目标检测

2024-07-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除