1. 项目概述
1.1 背景与意义
在现代电子制造中,PCB(Printed Circuit Board,印刷电路板)是一个至关重要的基础元件。PCB板在生产过程中可能会出现各种缺陷,这些缺陷如果不被及时检测并修复,将会导致电子设备的故障、性能下降甚至损坏。传统的PCB缺陷检测方法通常依赖人工检测,效率低且容易受到人为因素的影响。随着深度学习和计算机视觉技术的发展,基于自动化检测的PCB缺陷识别系统成为了行业的需求。
深度学习技术,尤其是目标检测算法,在图像分类和目标识别中取得了巨大成功。YOLO(You Only Look Once)是一种经典的实时目标检测算法,在许多领域得到了广泛应用。在本项目中,我们将使用YOLOv5进行PCB板缺陷检测,结合图形用户界面(UI)来进行图像上传、展示和实时检测。
目录
1.2 项目目标
本项目的主要目标是实现一个基于深度学习的PCB板缺陷检测与识别系统。具体目标包括:
- 数据集准备与预处理:收集并准备PCB缺陷检测数据集,进行标注、数据清洗与增强。
- YOLOv5模型训练:基于YOLOv5模型训练PCB缺陷检测模型,能够自动识别并定位缺陷。
- 实时检测模块