一、引言
随着视频监控的普及,行人检测作为计算机视觉领域的重要任务,已经被广泛应用于各种实际场景,包括智能交通系统、公共安全监控、智能零售等。YOLO(You Only Look Once)系列模型以其高效的性能和精确度,成为实时目标检测任务中的主流方法。本文将深入介绍如何使用YOLOv5、YOLOv8和YOLOv10模型进行行人检测,并通过Python和UI界面展示检测结果。
我们将详细描述从环境搭建、数据集准备、模型训练到推理的全过程,并给出完整的代码和实现步骤,帮助读者全面掌握行人检测的技术细节。
二、YOLO系列模型概述
YOLO系列模型的核心思想是将目标检测问题转化为回归问题,通过一个神经网络直接预测图像中的目标类别及其边界框(bounding box)。YOLO模型在速度和精度上表现优秀,特别适合实时目标检测。以下是YOLOv5、YOLOv8和YOLOv10的主要特点和差异:
YOLOv5
YOLOv5是由Ultralytics发布的YOLO系列的一个版本,尽管它并不是YOLO原始作者发布的,但由于其简洁性和高效性,成为了当前使用最广泛的YOLO模型之一。YOLOv5采用了PyTorch框架,并支持多种模型版本,如yolov5s
(最小模型)和yolov5x
(最大模型)。