1. 项目背景与意义
入侵检测系统(Intruder Detection System, IDS)是智能监控的重要组成部分,广泛应用于家庭安全、商业场所、公共安全等领域。随着视频监控设备的普及和计算机视觉技术的发展,基于深度学习的入侵检测成为热点研究方向。传统基于运动检测的方法容易受光照、天气等因素影响,误报率较高。而基于深度学习的目标检测模型,如YOLO系列,可以实现实时、精准的入侵行为识别,大幅提升安防系统的智能化水平。
本项目旨在基于最新的YOLOv8模型和自定义的CCTV入侵视频数据集,实现高效准确的入侵检测。通过构建从数据采集、标注、模型训练到结果展示的完整流程,帮助读者掌握实际深度学习项目落地的全套技术。
2. 入侵检测的技术难点与挑战
- 多样化入侵行为:入侵者的动作、体型、穿着等差异较大,导致模型难以泛化。
- 复杂背景环境:监控视频场景多样,室内外光照变化、遮挡、阴影等都会影响检测效果。
- 实时性要求高:安全监控需实时响应,模型需在保证准确度的同时保持快速推理。
- 数据标注成本高:视频数据量大,人工标注框架费时费力,需高质量标注保证训练效果。
3. 数据集准备与标注
3.1 参考数据集推荐
目前,公开的入侵检测专用CCTV数据集较少,常用的可参考数据集包