1. 引言
1.1 目标检测技术概述
目标检测是计算机视觉领域的核心任务之一,它不仅要识别图像中的物体类别,还要定位物体的具体位置。随着深度学习技术的发展,目标检测算法在精度和速度上都取得了显著进步,广泛应用于安防监控、自动驾驶、医疗影像分析等领域。
1.2 小样本学习的挑战
传统深度学习模型通常需要大量标注数据进行训练,但在实际应用中,获取大规模标注数据往往成本高昂。小样本学习(Few-Shot Learning)旨在解决这一问题,它使模型能够在仅有少量样本的情况下快速学习新类别。将小样本学习与目标检测结合,形成小样本目标检测技术,具有重要的现实意义。
1.3 YOLOv8的优势
YOLOv8是Ultralytics公司推出的最新目标检测模型,相比前代具有以下优势:
- 更高的检测精度和更快的推理速度
- 更灵活的网络结构设计
- 更友好的用户接口和更完善的文档支持
- 对小样本场景有更好的适应性
本文将详细介绍如何基于YOLOv8构建一个小样本目标检测系统,并开发友好的UI界面,最后提供完整可运行的代码实现。
2. 系统设计与架构
2.1 整体架构设计
我们的系统采用模块化设计,主要包含以下组件:
- 数据预处理模块