机器学习/深度学习——模型的评估详解
搭配以下文章进行学习:
卷积神经网络:
深度学习——卷积神经网络(convolutional neural network)CNN详解(一)——概述. 步骤清晰0基础可看
深度学习——卷积神经网络(convolutional neural network)CNN详解(二)——前向传播与反向传播过程(特征提取+预测+反向传播更新参数). 步骤清晰0基础可看
简单的神经网络详解:
深度学习——神经网络(neural network)详解(一). 带手算步骤,步骤清晰0基础可看
深度学习——神经网络(neural network)详解(二). 带手算步骤,步骤清晰0基础可看
梯度下降法:
机器学习/深度学习——梯度下降法(Gradient descent)详解. 步骤清晰 0基础可看
模型的过拟合与欠拟合:
机器学习/深度学习——模型的欠拟合和过拟合,正则化方法详解
(1)混淆矩阵
我们需要先了解如下概念:
它是一个表格,用于描述分类模型的预测结果与实际标签之间的关系。混淆矩阵的基本元素包括:
True Positives (TP): 真正例,模型正确预测为正类的样本数量。
True Negatives (TN): 真负例,模型正确预测为负类的样本数量。
False Positives (FP): 假正例,模型错误预测为正类的样本数量(也称为第一类错误)。
False Negatives (FN): 假负例,模型错误预测为负类的样本数量(也称为第二类错误)。
如下图所示展示了4个指标以及TRP和FPR的概念
总结
评估指标列表
1.Accuracy (准确率)
- 来源:正确分类的样本占总样本的比例
- 作用:衡量模型整体的准确性
- 公式: Accuracy = T P + T N T P + T N + F P + F N \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} Accuracy=TP+TN+FP+FNTP+TN
2.Precision (精确度)