机器学习/深度学习——关于分类任务的机器学习、深度学习模型的评估指标详解

机器学习/深度学习——模型的评估详解

搭配以下文章进行学习:

卷积神经网络:
深度学习——卷积神经网络(convolutional neural network)CNN详解(一)——概述. 步骤清晰0基础可看

深度学习——卷积神经网络(convolutional neural network)CNN详解(二)——前向传播与反向传播过程(特征提取+预测+反向传播更新参数). 步骤清晰0基础可看

简单的神经网络详解:
深度学习——神经网络(neural network)详解(一). 带手算步骤,步骤清晰0基础可看

深度学习——神经网络(neural network)详解(二). 带手算步骤,步骤清晰0基础可看

梯度下降法:
机器学习/深度学习——梯度下降法(Gradient descent)详解. 步骤清晰 0基础可看

模型的过拟合与欠拟合:
机器学习/深度学习——模型的欠拟合和过拟合,正则化方法详解

(1)混淆矩阵

我们需要先了解如下概念:

它是一个表格,用于描述分类模型的预测结果与实际标签之间的关系。混淆矩阵的基本元素包括:

True Positives (TP): 真正例,模型正确预测为正类的样本数量。
True Negatives (TN): 真负例,模型正确预测为负类的样本数量。
False Positives (FP): 假正例,模型错误预测为正类的样本数量(也称为第一类错误)。
False Negatives (FN): 假负例,模型错误预测为负类的样本数量(也称为第二类错误)。

如下图所示展示了4个指标以及TRP和FPR的概念

混淆矩阵
f1
总结

评估指标列表

1.Accuracy (准确率)

  • 来源:正确分类的样本占总样本的比例
  • 作用:衡量模型整体的准确性
  • 公式: Accuracy = T P + T N T P + T N + F P + F N \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} Accuracy=TP+TN+FP+FNTP+TN

2.Precision (精确度)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林采采学编程+

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值