- 博客(1405)
- 收藏
- 关注
原创 LASO: Language-guided Affordance Segmentation on 3D Object 论文代码解读与复现
LASO论文提出了一种语言引导的3D对象功能区域分割任务及配套数据集。该数据集基于3D-AffordanceNet构建,包含19,751个点云-问题配对,涵盖23类物体和17种功能类型。研究团队手工设计了58种物体-功能组合的870个问题,并通过GPT-4扩展增强问题多样性。数据集采用seen/unseen两种评估模式,测试模型对新组合的泛化能力。代码实现中,数据集初始化通过建立物体类别和功能类型的索引映射关系,并加载标注数据与点云信息。这项工作为语言引导的3D功能分割研究提供了标准化评估基准。
2025-06-17 15:16:53
449
原创 conda虚拟环境管理
本文总结了Conda环境管理的常用命令:创建新环境(可指定Python版本和安装包)、激活/退出环境、查看/删除环境列表、查看已安装包以及环境下的包安装方法。特别对比了pip与conda的差异:conda能处理非Python依赖并提供预编译包。最后提供了常见错误"CondaError"的解决方案。这些命令涵盖从环境创建到维护的全流程,帮助用户高效管理Python开发环境。注意使用pip安装时要先激活目标环境,避免包安装到错误位置。
2025-06-14 12:00:52
600
原创 语义分割中常用的损失函数
本文介绍了语义分割任务中常用的损失函数,重点分析了Dice Loss和BCE-Dice Loss的原理、特点及实现。Dice Loss基于Dice系数,对类别不平衡不敏感,适合小目标分割;BCE-Dice Loss结合了二元交叉熵(关注逐点分类)和Dice Loss(关注区域匹配)的优势,既能提升边缘识别精度,又能缓解类别不平衡问题。文章还提供了两种损失函数的PyTorch实现代码,包括平滑项处理等细节。这两种损失函数在医学图像分割等存在严重类别不平衡的场景中表现优异。
2025-06-14 11:58:48
664
原创 庖丁解牛BLIP2
BLIP-2论文提出了一种高效的多模态预训练方法,通过两阶段训练策略降低计算成本。核心创新是Q-Former模块,它在冻结的视觉编码器和语言模型之间建立桥梁。第一阶段使用图像-文本对比学习、基于图像的文本生成和图文匹配三种损失训练Q-Former;第二阶段将学习到的视觉特征适配到冻结的LLM。这种方法显著减少了训练开销(比现有方法节省15倍资源),同时保持了强大的zero-shot生成和视觉推理能力。代码已开源在LAVIS项目中,为多模态研究提供了高效解决方案。
2025-06-01 16:34:28
961
原创 简析PointNet++
PointNet++网络概述 PointNet++是对PointNet的改进,主要解决了局部特征学习问题。网络通过层次化结构处理点云数据,包含采样层、分组层和PointNet层三个核心组件:1)采样层使用最远点采样选择中心点;2)分组层通过球查询构建局部区域;3)PointNet层对局部区域进行特征编码。这种架构能够更好地捕捉局部上下文信息,同时保持对点云无序性和几何变换的鲁棒性。网络通过递归应用这些层次化操作,逐步抽象点云特征,最终实现对点云数据的分类或分割任务。
2025-06-01 16:18:48
1079
原创 简析PointNet
PointNet是首个直接处理点云数据的深度学习方法。针对点云的无序性、点间关系、几何变换不变性及噪声问题,PointNet创新性地采用对称函数(max pooling)实现顺序不变性,通过T-Net网络实现几何变换鲁棒性,并结合局部与全局特征融合机制。理论证明其仅依赖关键点集,对缺失和噪声具有强鲁棒性。实验显示,即使50%点缺失,分类准确率仅下降3.7%。该架构奠定了三维深度学习的基石,为点云分类、分割等任务提供了统一解决方案。
2025-05-28 15:33:52
615
原创 花卉图片分类实战 -- 基于预训练的 Vision Transformer 实现
花卉图片分类实战 -- 基于预训练的 Vision Transformer 实现
2025-02-15 10:51:32
785
原创 生成式聊天机器人 -- 基于Transformer实现的SeqToSeq模型 -- 上
生成式聊天机器人 -- 基于Transformer实现的SeqToSeq模型 -- 上
2025-02-13 16:03:37
878
1
原创 生成式聊天机器人 -- 基于Pytorch + Global Attention + 双向 GRU 实现的SeqToSeq模型 -- 下
生成式聊天机器人 -- 基于Pytorch + Global Attention + 双向 GRU 实现的SeqToSeq模型 -- 下
2025-02-09 23:39:20
1282
原创 生成式聊天机器人 -- 基于Pytorch + Global Attention + 双向 GRU 实现的SeqToSeq模型 -- 上
生成式聊天机器人 -- 基于Pytorch + Global Attention + 双向 GRU 实现的SeqToSeq模型 -- 上
2025-02-09 19:22:17
1293
转载 基于 Neural Style Transfer 论文 实现的图像风格迁移
基于 Neural Style Transfer 论文 实现的图像风格迁移
2025-01-24 12:30:01
196
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人