Open3D 最小二乘法拟合曲线——线性回归实现

目录

1. 前言

2. 线性回归法

2.1 模型假设

2.2 定义误差函数

2.3 求偏导并解方程

2.4 案例演示

2.4.1 使用 python 实现

2.4.2  使用库函数实现(更推荐)


1. 前言

        最小二乘法拟合曲线与拟合直线的核心原理完全相同,都是基于最小化误差平方和的思想,使得所有数据点到该函数的垂直距离的平方和最小但在数学形式和计算复杂度上存在差异

        直线属于一次多项式,定义为:

y={\color{red}a}x+\color{red}b

关于最小二乘法拟合直线的内容可以看到我的另一篇博客:

最小二乘法拟合直线,用线性回归法、梯度下降法实现_最小二乘法拟合直线回归-CSDN博客文章浏览阅读956次,点赞14次,收藏12次。对于每个数据点,预测值为最小化所有数据点的误差平方和:最终目标就是找到使总误差S最小的a、b,这可以通过S分别对a、b求偏导,并令偏导数 = 0来实现梯度下降(Gradient Descent)是一种迭代优化算法,通过不断沿损失函数负梯度方向更新参数,逐步逼近最优解。_最小二乘法拟合直线回归 https://blog.csdn.net/m0_55908255/article/details/148018256?spm=1011.2415.3001.5331

        而曲线属于高次多项式,定义为:

y={\color{red}p_1}x^n+{\color{red}p_2}x^{n-1}+.....+\color{red}p_{n+1}

        其中多次项系数为:\color{red}p=\left \{ {p_1,p_2,......,p_n,p_{n+1}}\right \},最小二乘法的目标就是:拟合出最佳的多次项系数 \color{red}p,使得这条曲线尽可能接近所有的数据点

2. 线性回归法

        线性回归法也称为直接法,计算简单,可以直接推导出拟合曲线 y={\color{red}p_1}x^n+{\color{red}p_2}x^{n-1}+.....+\color{red}p_{n+1} 的 多次项系数 p=\left \{ {p_1,p_2,......,p_n,p_{n+1}}\right \}

为了方便整个流程分析,下面以二次多项

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值