- 博客(30)
- 资源 (2)
- 收藏
- 关注
原创 SparkSQL 优化实操
本文系统介绍了Spark SQL优化技巧,涵盖资源配置、内存管理、SQL查询优化、数据存储、执行计划分析、缓存策略等核心内容。重点包括:资源配置参数调优,SQL优化如分区裁剪、谓词下推和广播Join,高效的Parquet/Delta存储格式选择,数据倾斜解决方案,以及动态资源分配和AQE等高级特性。通过合理配置参数、优化查询逻辑和存储方案,结合执行计划分析与监控工具,可显著提升Spark作业性能。文末的优化案例展示了如何将多种技巧结合应用,实现查询性能15倍的提升。
2025-06-05 10:59:25
850
原创 Hive开窗函数的进阶SQL案例
开窗函数是一种在保留原始数据行的同时进行分组计算的SQL技术,其核心语法包含PARTITION BY(分组)、ORDER BY(排序)和ROWS BETWEEN(窗口范围)三个关键子句。主要应用于五大场景:1)累计计算(如年度招聘人数累加);2)排名分析(ROW_NUMBER、RANK等函数);3)移动计算(移动平均、差值计算);4)连续行为分析(如连续登录统计);5)高级偏移分析(最新消息提取、间隔计算)。相比于普通聚合函数,开窗函数能保持原数据行数不变,通过OVER子句实现灵活的数据分析,但需注意性能优
2025-06-04 18:06:04
1097
原创 Hive终极性能优化指南:从原理到实战
《Hive生产环境调优实战指南》 摘要: 本文系统总结了Hive生产环境核心调优方案,涵盖执行引擎优化、存储设计、SQL技巧、资源配置及数据倾斜处理五大维度。通过启用Tez/Spark引擎提升执行效率30%-60%,采用ORC/Parquet存储格式优化I/O性能,实施分区分桶策略加速查询,并针对数据倾斜场景提供了打散Key的实战解决方案。文中包含20+关键配置参数和性能对比数据,如10亿级日志分析任务优化后耗时降低83%。附调优参数速查表和典型避坑建议,为大数据工程师提供了一套完整的性能优化方法论。
2025-06-04 13:27:52
1298
原创 基于Flask和PostgreSQL的动态数据同步与管理工具
本文介绍了一个基于Flask框架和PostgreSQL的动态数据同步与管理工具。该工具支持通过Web界面上传Excel文件到数据库、查看/下载数据、删除特定行或全部数据,并采用JWT进行用户身份验证保障安全性。技术栈包含Flask、SQLAlchemy、pandas等模块,具备自动建表、连接池优化、跨域支持等功能。系统提供了完整的Web操作界面和API接口,包含登录验证、文件上传、数据管理等功能模块,并附有详细的使用说明。该方案适用于需要灵活管理数据库内容的场景,同时提供了性能优化和安全部署的建议。
2025-06-03 10:30:00
1155
原创 开源免费数据同步工具全景解析与实战指南
《开源数据同步工具生态全景与选型指南》摘要:本文系统梳理了开源数据同步工具生态,涵盖ETL/CDC/文件同步/数据库复制等类型,对比主流工具特性。重点解析DataX、FlinkCDC、SeaTunnel、TapData等技术架构与性能优化方案,提供全量增量同步、跨云同步等场景化解决方案。通过决策树模型指导选型,并给出性能调优与生产环境实践建议。结果显示:金融场景适合国产化TapData,实时分析首选FlinkCDC,多源异构推荐DBSyncer,传统数仓适用DataX。文章为技术选型提供系统性参考框架。(1
2025-06-02 10:30:00
821
原创 拉链表深度解析与实战:历史数据追踪的高效解决方案
拉链表是一种高效记录数据历史变更的存储结构,通过时间维度扩展实现数据的全生命周期追踪。相比快照表,拉链表仅存储变更数据,可节省80%-90%存储空间,提升查询效率3-5倍。典型应用场景包括用户画像系统和订单状态跟踪,主要通过维护生效/失效时间来记录数据变更。实现流程包含数据初始化、增量处理和历史查询三个关键环节,需结合分区管理、增量合并等优化策略提升性能。生产环境需注意数据重复、状态丢失等问题,建立监控体系。实测显示,拉链表在亿级数据量下存储和查询性能显著优于快照表。最佳实践建议采用自动化运维、版本控制等机
2025-06-01 01:00:00
838
原创 基于Sqoop的MySQL-Hive全量/增量同步解决方案(支持多表批量处理
本文介绍了基于Sqoop实现MySQL到Hive的高效数据同步方案,包含全量同步和增量同步两种模式。全量同步采用批量脚本处理多表,支持动态配置并行度和分片字段;增量同步提供Append和LastModified两种模式,支持自动获取最后同步时间。方案还包含数据类型映射、分区表同步等常见问题解决方案,以及性能优化参数配置、监控容错机制和生产环境最佳实践。通过配置驱动模式和混合模式,实现了灵活可扩展的多表同步策略,确保数据同步的高效性和可靠性。
2025-05-31 20:00:00
511
原创 Hive数据倾斜问题深度解析与实战优化指南
数据倾斜是Hive处理大数据的常见瓶颈,主要表现为作业卡在99%、资源失衡和任务失败三大问题。其核心成因包括数据分布不均、SQL缺陷、存储问题和计算限制。优化方案涵盖参数调优(如两阶段聚合)、SQL重构(加盐技术、Skew Join)和存储改造(分桶表、文件格式选择)。针对复杂场景提出多维度倾斜治理和动态分流技术,并建立监控体系与调优清单。通过千万级日志案例验证,优化后执行时间缩短88.5%。未来趋势将向Spark AQE、Flink实时处理和存储计算分离方向发展。
2025-05-30 15:41:47
1045
原创 Hive数据倾斜问题深度解析与实战优化指南
摘要: 数据倾斜是Hive中因Key分布不均引发的性能问题,表现为任务卡顿、资源失衡及OOM风险。核心成因包括数据分布不均、SQL缺陷、存储结构问题及计算引擎限制。优化方案涵盖参数调优(如两阶段聚合)、SQL重构(加盐技术、SkewJoin)、存储改造(分桶表设计)及动态分流技术。生产环境需平衡设计复杂度,结合监控指标(如Reducer处理时间)进行调优。实战案例显示,通过预处理、倾斜Key识别与盐值改造,可将千万级日志分析耗时缩短88.5%。未来趋势包括Spark AQE自动优化及Flink实时处理。
2025-05-30 15:26:47
757
原创 针对PostgreSQL中pg_wal目录占用过大的系统性解决方案
PostgreSQL中pg_wal目录占用过大的解决方案摘要:当pg_wal目录异常膨胀时,主要由长事务未提交、复制槽未释放、检查点配置不当、归档失败或复制延迟导致。诊断方法包括检查WAL占用、定位未完成复制槽及长事务。解决方案涵盖调整WAL保留参数(如max_wal_size)、清理无效复制槽、手动触发检查点、归档模式下的文件清理,并提供自动化脚本示例。关键注意事项:所有操作需先在测试环境验证,建议部署监控工具实时预警。通过系统性的参数优化和定期维护,可有效控制pg_wal目录大小,避免磁盘占满风险。
2025-05-29 14:32:47
539
原创 kettle实现多表数据同步
摘要:Kettle多表同步任务优化方案 针对Kettle同步多张表时逐个创建转换的繁琐问题,提出了一种批量处理的解决方案。该方案包含五个关键步骤:1)设计总任务流程图;2)获取多表名并查询数据;3)构建数据同步主流程;4)设置必要变量;5)实现数据表同步。这种方法通过自动化流程显著提高工作效率,避免了重复创建单个转换的麻烦。
2025-05-29 13:49:34
675
原创 基于Flask和MySQL的动态数据同步工具
本文档详细介绍一个结合了Flask框架和MySQL数据库的动态数据同步工具。该工具支持通过Python脚本将一个MySQL数据库中的数据同步到另一个MySQL数据库中,并提供了详细的部署和使用说明。此外,文档还包括了用户身份验证、错误处理和性能优化建议,帮助你快速上手并确保系统的稳定运行。CopyInsert。
2025-05-27 17:07:09
855
原创 基于Flask和SQL Server的动态数据查询API
本文介绍了一个基于Flask框架的动态API项目,支持通过GET请求查询SQL Server数据库中的任意表数据。项目采用JWT(JSON Web Token)进行身份验证,确保数据安全,并包含详细的错误处理机制。技术栈包括Flask、SQLAlchemy ORM和SQL Server数据库,支持跨域访问。文档提供了完整的配置指南和使用说明,包括数据库连接设置、API调用示例以及安全注意事项。特别强调了JWT认证的重要性和性能优化建议,为开发者提供了一套完整的动态数据查询解决方案。
2025-05-27 16:58:17
1000
原创 基于Flask和PostgreSQL的动态数据查询与存储过程调用API
本文介绍了一个基于Flask框架、SQLAlchemy ORM和PostgreSQL的动态API系统。该系统支持通过GET请求查询数据库表数据、调用存储过程和函数,并采用JWT进行身份验证。主要功能包括用户登录获取Token、动态数据查询(支持条件筛选)、存储过程和函数调用。技术栈包含Flask、SQLAlchemy、PostgreSQL、JWT和CORS。系统提供了详细的错误处理和日志记录,并通过自定义JSON编码器处理特殊数据类型。使用说明包括依赖安装、数据库配置和API调用示例,强调安全性、性能优化和
2025-05-27 16:54:48
1256
原创 python批量从mysql数据库结构转换成pg库建表
本文介绍了一个使用Python自动化处理多数据源同步到数据湖的方案。该方案通过pymysql连接MySQL数据库,自动获取表结构信息,并设计表结构转换脚本。文章重点展示了如何将MySQL各种数据类型映射到数据湖支持的类型(如varchar转string、int转BIGINT等),最终生成Hive格式的外部表创建语句。该方案解决了手动处理多表结构转换效率低下的问题,大大提高了数据同步的工作效率。
2025-05-27 16:42:18
219
原创 python定时调用pg库存储过程
摘要:针对PostgreSQL数据库定时执行存储过程不便的问题,介绍了一种基于Python的解决方案。通过psycopg2库连接数据库,结合schedule模块实现定时任务调度。代码示例展示了如何连接数据库、调用存储过程(insert_order_list_data和refresh_performance_tables),并设置每天12:30自动执行任务。该方法简化了PG数据库的定时任务管理,提供了更灵活的调度方式。(150字)
2025-05-26 18:11:14
322
原创 python批量sqlserver表转换pg库建表语句
1、不同数据结构转化,所设计表众多,手动起来太麻烦又耗时间。# 在处理多种数据源同步到数据湖时,总是面临许多的问题。2、使用python简单又方便,大大提高效率。
2025-05-26 18:03:18
311
原创 简单的Python爬虫教程脚本
以下是一个简单的Python爬虫教程脚本,帮助你入门 Python 爬虫。这个脚本将从一个网页上抓取数据并将其展示在终端上。你可以根据你的需求对这个脚本进行进一步修改和功能。
2023-04-24 11:39:53
1994
8
原创 SQLServer日期格式转换常用
SQLServer日期格式转换常用:Select CONVERT(varchar(100), GETDATE(), 24): 10:57:47Select CONVERT(varchar(100), GETDATE(), 108): 10:57:49Select CONVERT(varchar(100), GETDATE(), 12): 060516Select CONVERT(varchar(100), GETDATE(), 23): 2006-05-16select CONVER
2021-10-18 14:05:21
728
原创 KETTLE实战教程 第1篇 从excel导入到mysql数据库
在数据仓库技术中,ETL是必不可少,Kettle作为ETL的经典开源工具,已经得到广大ETL工程师的喜爱,甚至连开发工程师在使用ETL过程中,优先考虑的也是Kettle工具。1、新建转换,从kettle组件中拖出excel组件,从Steps查找组件名称excel,拉出Input里面Microsoft Excel Input2、添加所需要导入的excel数据...
2021-08-31 19:07:48
1299
原创 mysql 汉字转拼音直接上手可用
--汉字转全拼--创建表create table `t_base_pinyin` (`pin_yin_` varchar (765),`code_` int (11));insert into `t_base_pinyin` (`pin_yin_`, `code_`) values('zuo','10254');insert into `t_base_pinyin` (`pin_yin_`, `code_`) values('zun','10256');insert into `t_ba
2021-08-28 11:37:48
189
原创 MySQL日期函数与日期转换格式化函数大全
1、DAYOFWEEK(date) 1 2 SELECT DAYOFWEEK(‘2016-01-16') SELECT DAYOFWEEK(‘2016-01-16 00:00:00') 1 -> 7 (表示返回日期date是星期几,记住:星期天=1,星期一=2, ... 星期六=7) 2、WEEKDAY(date) 1 2 SELECT WEEKDAY(‘201
2021-08-28 11:33:32
895
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人