李航统计学习感知机算法实现


前言

李航的《统计学习方法》和西瓜书是入门机器学习进而到深度学习的经典书籍,笔者是数学专业大二在读,在编程方面仍有许多不足之处,在已经看完相关经典书籍后开始编程实践。因为本人愚钝,且不善编程,所以在实现算法的过程中总有许多冗余操作,但那也不失为一种特色,因为我在编辑代码的时候仅使用简单的操作同时多注释足够详细。希望自己的代码可以帮助到更多和我一样初入机器学习的同学,我们一起进步。本文对感知机算法做出了实现,仅供参考,转载注明出处。

感知机的算法实现

感知机是最基本的,也是最简单的机器学习模型,主要通过线性模型来区分线性可分的数据集
1,数据集的具体内容
在这里插入图片描述

2,通过代码实现感知机算法`
代码实现如下:

import numpy as np
import pandas as pd
#仅供参考转载注明出处
#定义sgn函数
def sgn(x):
    if x > 0:
        return 1
    else:
        return -1

#判断是否存在误分类点
def classfy(data, w, b):
    for
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值